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Welcome back students. In the last class, we were discussing about the internal and external 

mass transfer limitations in immobilized cell systems or immobilized enzyme systems. And 

while characterizing the internal mass transfer limitations in systems, we assumed different 

reaction kinetics in which we started with the zero-order kinetics and then today we are going 

to assume a first-order kinetics. 

 

And see how does the efficiency factor or the substrate profile in the presence of diffusional 

limitations changes with the radius of the pellet. So, if you can see on the slide the first-order 

kinetics it will be a linear function of the substrate. So, because here the rate of reaction is in 

terms of the substrate, the sign is negative here for the rate constant and C s stands for the 

concentration of the substrate.  

 

Now in the same double differential equation where we did a shell balance for the substrate 

diffusing in from the surface of the pellet till the inner core or of the immobilized system in 

the same equation where we were describing the net accumulation rate of the substrate. 



There, if you see equation 3.24 it has been converted in dimensionless variables of x s shown 

here and r dot.  

 

Now x s has been made a dimensionless variable or a ratio of C s to C sb where C sb stands 

for bulk substrate concentration. Your r dot is a ratio of small r to capital R where if you 

remember the capital R was the radius of the pellet or that immobilized shell and small r is 

the distance travelled by the substrate from the center and phi which is a club of constants 

here after rearrangement.  

 

So, these constants include the rate constant, the reaction rate constant and the diffusivity 

with the radius of the pellet. Now phi stands for this constant which is called as Thiele’s 

modulus. If you can see in this equation here which I am underlining, it is a measure of the 

reaction rate to the diffusion rate. So, again with the changing values of phi, phi being low or 

high we can determine whether the reaction rate is high or the diffusion rate is high.  

 

Then the boundary conditions in terms of C s and r have been now changed in terms of the 

dimensionless variables x s and r dot. So as dC s by dr was 0 at r tending to 0, so x s is called 

again will be bounded at r dot nearly 0 and x s will become 1 which means when cs is equals 

to C sb at what point at the surface of the pellet which is r dot is equal to 1 where r is equal to 

capital R.  
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Now in order to solve this differential equation 3.24 again like we did for zero-order kinetics, 

a substitution has been done in terms of alpha dot where alpha dot stands for r dot times x s 



and then we simplify the double differential equation and then we integrate it twice to get x s 

in terms of r dot. Now as x s must be bounded when r dot approaches 0, so therefore C 1 has 

to be chosen as 0. 

 

And using the second boundary condition we can determine the value of C 2 as 1 by sin h 3 

phi. So, if C 2 is 1 by sin h 3 phi your x s then becomes a function of r dot as shown in the 

equation 3.3.  
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So, if we make a plot between x s and r dot with varying value of Thiele’s modulus, we can 

see how Thiele’s modulus affects the substrate profile inside the pellet. So, if the Thiele’s 

modulus is very low effectively meaning that the rate of enzymatic reaction is slow compared 

to the diffusion rate. Then the substrate would diffuse into the core of the particle which will 

result in fairly flat distribution as shown here by the blue line.  

 

On the other hand, for higher values of modulus like let us take phi = 5 this would mean that 

the reaction rate is much faster than the diffusion rate. So, most of the substrate will get 

consumed in the reaction near the particle surface itself before it diffuses in and therefore you 

see a sharp decrease in the substrate profile as it moves inside.  
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Now in order to find an expression for the efficiency factor in such a system, then efficiency 

factor if you remember it is the ratio of the actual reaction rate to the reaction rate without 

diffusional limitations. So, without diffusional limitation would mean that maximum mass 

transfer. So maximum mass transfer rate would be what? Will be k C sb because there is no 

diffusional limitation.  

 

So, then whatever is at the surface should be able to reach to the inner core, so maximum rate 

would k Cs b. And the actual rate will be equal to the diffusional rate here at r dot =1. So we 

will be using the Fick’s law of diffusion so for the entire pellet we will be calculating, so 

therefore the r dot value will be equal to 1. And we will multiply and divide the dC s by dr 

with C sb. 

 

And r and then taking it in inside the differential function being a constant and converting it 

into a x s and r dot form. So, then outside we will have the C sb and r the diffusivity constant 

and your area of the particle and the volume of the particle. So, this would be your reaction 

rate. So, if we solve this, the expression for the efficiency factor comes in the form of 

Thiele’s modulus. 
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And now if we try to visualize how Thiele’s modulus can affect the efficiency of the 

immobilized system, then what we can find is that for different types of reaction kinetics. As 

the value of phi is less than 1, the effectiveness factor is nearly equal to 1 which is the case 

when the rate of reaction is not getting slowed by the diffusion process.  

 

On the other hand, if the Thiele’s modulus is becoming greater than 1, then the effectiveness 

factor is found to be inversely related to the Thiele’s modulus. So as the Thiele’s modulus 

will keep on getting increased the efficiency factor is going to go down.  
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Now if we take Michaelis-Menten enzyme kinetics or reaction kinetics in the enzyme system, 

we know that the reaction rate can be given as shown in equation 3.33 as Michaelis-Menten 

kinetics. So now substituting in place of the reaction rate here also furthers changing the C s 



and the r in terms of the dimensionless variables x s and r dot, so we have Thiele’s modulus 

and an extra constant called beta which is defined as C sb by K M, K M stands for the 

Michaelis-Menten constant.  

 

So, if you do the rearrangement of the second-order differential equation and do all the 

substitutions bring all the constants together. then the Thiele’s modulus in this case gets 

slightly changed in comparison to that with the first-order kinetics where now inside the 

square root you will find we have the Michaelis-Menten constant, the diffusivity and the 

maximum reaction rate.  

 

Now this is a non-linear function in x s if you notice equation 3.34. It is a non-linear function 

in x s, so it cannot be solved analytically. So, we use various numerical techniques.  
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And in order to simplify it, we again do a substitution converting dx s by dr dot as Y and then 

this is equation, the earlier equation 3.35 gets converted to a single differential equation form 

as shown in equation 3.36. And similarly, your boundary conditions can be changed in terms 

of Y with r dot where Y now becomes equal to 0 as x s was bounded. Let us assume that 

there is a critical radius r beyond which the substrate is not able to diffuse in, so it is bounded. 

 

So, your r dot then in that case becomes R c which is the critical radius by the total radius of 

the pellet at the surface. And at xs = 1 which means at the surface where the substrate 

concentration is equal to the bulk concentration, this is happening at the surface. So, therefore 



r dot value is 1. So, the boundary conditions remain the same it is just the change in the 

variables.  

 

And in this case the effectiveness factor can be represented as the actual reaction rate and the 

reaction rate in the absence of any diffusional limitations. So, if there are no diffusional 

limitations the substrate which is available for reaction is your bulk substrate concentration. 

So, it has been substituted in the Michaelis-Menten equation for maximum reaction rate 

without diffusional limitations and the numerator is using Fick’s law for the reaction rate.  
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So as the value of the effectiveness factor is a measure of the extent of diffusional limitations 

let us see some cases. If the effectiveness factor is less than 1, this means that the conversion 

is diffusion limited. Whereas if effectiveness factor is nearly 1, this means the conversion is 

limited by the reaction rate and the diffusional limitations are negligible. And eta in turn is a 

factor of Thiele’s modulus and the function beta in this case.  

 

Now if we want to use this as a generalized equation and try to find the conditions for the 

zero order and the first-order reaction rate, so if you substitute the value of beta as very large 

value which means beta tending to infinity. So, beta was C sb by K M, is not it? And beta is 

very large which means the substrate is in x s, so it becomes a zero-order reaction. Then your 

efficiency factor is nearly equal to 1 for a wide range of Thiele’s modulus.  

 

Now if you remember to visualize this what was Thiele’s modulus? The Thiele’s modulus 

was maximum reaction rate to the diffusion rate. So, for a wide range of Thiele’s modulus, 



the reaction rate will be higher than the diffusional rate because the substrate is in x s, so your 

efficiency factor will be nearly equal to 1. And this range of phi is given as between 1 to 100. 

Now let us take the case for the first-order reaction rate.  

 

So, for the first-order reaction rate beta tends to 0, so your beta was C sb by K M, so beta is 

tending to 0 here. For high values of phi, your eta can be given as a function of hyperbolic 

functions of phi and beta is a very small value.  
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So now let us see how can we use all these information in a practical scenario? Now the 

points which we must keep in mind when we are designing immobilized systems for 

maximum efficiency because internal diffusion will limit the enzymatic reaction rate the 

constants V m and the K in such immobilized system they will not be the true intrinsic rate 

constants, but what we will measure through the experimental data would be the apparent 

values.  

 

Now in order to obtain the true rate constants inside the immobilized systems, the diffusional 

limitations they should be eliminated by doing what all things? By using small particle size, 

having high degree of turbulence around the particles so that the boundary layers are reduced 

or having high substrate concentration. Now while designing immobilized enzyme systems 

using particular support, the main variables are the maximum reaction rate and the radius of 

the pellet.  

 



Now maximum reaction rate would in turn be dependent on the concentration of the enzyme. 

Now when the substrate concentration K m which is the affinity of the enzyme towards the 

substrate and D stands for the diffusivity of the substrates., this we assume are fixed the given 

values because the substrate is given. So, the particle size is what which can be manipulated 

or designed and the second is the enzyme concentration which is being immobilized in the 

system.  

 

So, the maximum reaction rate is determined by enzyme activity and the concentration inside 

the support. So high enzyme content will result in high enzyme activity per unit of the 

reaction volume. However, this will lead to low effectiveness factors because all the substrate 

will quickly get consumed near the surface, efficiency factor will reduce because whatever is 

present inside will be devoid of the substrate.  

 

Whereas if there is low enzyme content it will result in lower enzyme activity per unit 

volume, however high efficiency factor. So, for maximum reaction rates what should one do? 

The particle size should be kept small and the enzyme loading should be optimized so that 

although the enzyme activity per unit volume is being optimized the size of the particle is 

being designed. So that all the substrate is able to reach and get converted with the enzymes 

present in the inner core. 


