Transport Phenomena in Biological Systems
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Course Review-Part 3
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Thermal Energy Flux
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Welcome to the third review lecture. In this lecture we look at thermal energy flux as well as
the charge flux. The thermal energy flux is a thermal heat transport is more relevant to us.
However, the total energy is conserved, thermal energy alone is not conserved. Therefore, we
looked at total energy and then backed out thermal energy part of it on one side and that is how
we could write this expression.
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We know that the total energy is conserved

In this chapter, we will focus on the transfer of energy as heat (thermal energy)
across system boundaries,

=
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We already know that thermal energy (heat) transfer can happen by 3 mechanisms: conduction, convection and
radiation
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We need to understand the mechanisms a little better
Conduction: The transfer of heat due to molecular processes

We have seen earlier th.

onstitutive equations govern some fluxes -
(mass flux)
ar flow (momentum flux)

equation known as ‘Fourier’s law’ governs conduction (energy flux)
er's law.

dr

@ =k

Eq.4-1

g, = heat flux in the x-direct

T = Temperature at any pos 1x{u
k = thermal conductivity (units: J s

So, we also saw before attempting an equation of heat energy, that heat is transferred by 3
major mechanisms, one is conduction due to molecular processes. The other one is convection
due to movement of the medium bulk flow. The third is radiation, which is through
electromagnetic waves and so on so forth. It can happen even in free space.
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§=-kVT Eq.4-2

Table 4 - 1 gives the component-wise equations in the three coordinate systems

1 a moving fluid, § represents the flux of thermal energy relative to the local velocity

Now, let us define a quantity called thermal diffusivity: «

as £q.4-3

Can you compare the units of « (heat energy) with those of D (mass) and v = = (momentum)?

The first we saw the equation for conduction alone the Fourier law q = - kVT okay dT/dx in 1
dimension or VT in 3 dimensions, then a, the thermal diffusivity k/p Cp has the same units as
that of mass diffusivity, as well as intrinsic viscosity u/p okay. So, p/p has same units,m?s™.

So, they are all equivalent physical quantities is what we can say for different transports.
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Table 4 - 1 Thermal Energy Flux (when only conduction is involved)
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Spherical:
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Then this table gives you the thermal energy flux when only one only conduction is involved,
you are asked to make a copy of it and keep it as a part of your notes, for these 3 different
coordinate systems okay.
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Convection: Flow induced heat flux
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Two kinds of convection exist

Forced convaction: |
by a pump or a blower

sfer due to flow generated by an external means such as a pressure gradient caused

Free convection:
which in turn is

ow, normally small in magnitude, which is generated by a density differential,

We will see much more of convective heat transport in a later chapter
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Radiation: Heat transport through electromagnetic waves

A Eed
%
Utgpaps’

From early physics/chemisti now that the transitions of electrons between various energy levels in an
atom result i

Thus, any sut e f wavelengths
Further, when any electromagnetic energy is incident on a substance, it will absorb the energy due to its electronic

transitions

When the energy is transferred as heat through radiation, from say a body to its surroundings, the radiative flux is given

by Stefan-Blotzmann’s law

o the Stefan-Boltzmann constant = 5.67 X 10°Wm?K
ity of the body

T: the absolute temperature

Then we had looked at the equation of energy.
(Refer Slide Time: 02:33)
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Equation of energy

We did not spend as much time with the equation of energy.
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although sheli-balances provided a physical feel
sier to employ for complex problems/ situations,

Let us look at the equation of energy that can be applied in any heat transport situation

1
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Let us consider the flow of a pure fluid through a stat olume (control volume; the same as the rectangular

box in Cartesian coordinates that we first considered for mass and momentum transfer)

2 x+Qx, y* By, z+ Az}
- -

However, the equation of energy, the same way, before that let me say this, again that you
could do 2 approaches here, one is shell balances, the other one is derive the conservation
equation, write it in a form that would be useful and use it directly for more situations. | did

not explicitly show you, shell balances here, | went directly to the equation approach.
(Refer Slide Time: 03:05)
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* Internal energy, which can be visualized as arising from the v

brational, rotational and potential energies of the molecules

Kinetic energy, which is associated with the observable (bulk) motion

* Energy that crosses the control volume boundaries as heat through conduction

« Energy that is generated as heat in the control volume by say, metabolic activities

he stresses (and other aspects, such as gravity)

electrical, magnetic, surface,
m in the final equation by mere algebr

And that was the outline of how we got.
(Refer Slide Time: 03:09)



Let us write the law of conservation of energy, in our intuitive balance way, as

d(E)
de
Energy that '
accumulates Energy that CROSSES
IN the system  the system boundaries

Let us further separate the convection and conduction aspects

(Rate of accumulation)

LE.: internal energy
K.E.: kinetic energy

There was discussed in some detail.
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1am not going to prese

Here, we will directly present the equation

8 (1 = [ afp.1.) o
7P\ 0+39%) = =(Wpi(0+5+)) -(.4)

rate of energy in puv

Rate of energy
a by convection

gain puv
-(v.p¥)
Rate of work done

onthe fluid puv by
pressure forces

They put everything together. We got the equation of energy as %p(U+ 1/2v?). Therefore rate

of energy gain per unit volume of the control volume equals - V . p v(U+ 1/2v?). This is rate of
energy in per unit volume by convection, (- V . q) rate of energy in per unit volume conduction,

(+ p v.g), the rate of work done on the fluid per unit volume by gravitational forces - V.pv.

The rate of work done on the fluid per unit volume by pressure forces, - V .( 7.v) rate of work

done on the fluid per unit volume by viscous forces + Q (other it could be a metabolic) - W other

okay, we saw other shop work and so on okay.
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tion here, but it is given, step-by-step, in the textbook
It is recommended that the learner goes through the derivation and convinces himself/herself

rate of energy in puv




In vector notation

a ( (e ) - -
kU +—'. J :—kV.p\ U -I——'. J —(V.qg) +p(v.g)
A i A Rate of work
Rate of Rate of Rate of
) ) done on the
energy energy in, puv energy in, puv .
. ) . fluid puv by
gain puv by convection by conduction

gravitational forces
—(V.pv) —(V.[E.¥])
Rate of work done  Rate of work done
on the fluid puv by on the fluid puv by
pressure forces viscous forces
+ Qm\ other like metabolic heat u/olhcr (4.2-3)

where puv is per unit volume.
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r product between two tensors or equivalents

e " product between f and 717 (note that both have 9 components, each, in a 3-D system)

Other work and so on. So, that we wrote in a useful form, we looked at the double dot product
which is a scalar product between 2 tensors or equivalents.
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Let us now present the equation of thermal energy in the three different coordinate systems (Table 4.2. - 1

Which also has 9 components.
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Thermal energy flux - Equations

And then | showed you the application of course they were tables of the energy equation, which
| would asked you to make a copy off and keep as a part of your notes.
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Table 4.2.-1 The Equation of Thermal Energy

Rectangular:

¥ /
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(A1)

Again, this flashing this here | am not going to discuss this here. Then | showed you how we
discussed.
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Temperature profile in a tissue

How you could use the equation of thermal energy to get to the temperature profile in a tissue,
this was the first example.
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nd the temperature profile and the maximum temperature attained in a tissue at steady state, caused by

heat generated due to metabolism, say i

Let us approximate the tissue to be a cylinder of radius R, thermal conductivity k, and with a uniform and

nt heat generation, Q,, . Let us also assume that the conditions in the body are such that the surface of

const

each tissue is kept at a constant temperature, T,, and that there is no heat flux along the tissue length. Also

assume that no other work is done by the tissue
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Then by cancelling the irrelevant terms we could get to the governing equation.
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Let us non-dimensionalize the solution. Let us define £
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The solution f=1-§¢ £q.4.21.-6

Which we can solve in a fashion similar to what we did for laminar flow through a pipe.
(Refer Slide Time: 05:19)




Let us non-dimensionalize the solution. Let us define

. T T £
Qp R?

ik

The solution f=1-¢ £q.4.2.1.-6

To get a parabolic profile of non dimensional temperature verses non dimensional dimension.
(Refer Slide Time: 05:28)
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And also we look at the rate of heat dissipation at the cylindrical surface. Then we plugged in
some numbers to see that the maximum temperature is about 0.3 degrees higher or could be
about 0.3 degrees higher compared to this surface temperature, ok. Then we saw an example
with unsteady state right, this is been the pattern we looked at steady state cases and then
unsteady state. Unsteady state just to give you a flavour of the complexities involved and what

does unsteady state really mean where all does it become relevant and so on so forth.

The way you should start looking for unsteady state, ok despite the mathematical complexity
that is.
(Refer Slide Time: 06:12)
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Unsteody state heat conduction

And an example was given that complicated with the complications.
(Refer Slide Time: 06:17)

In the mathematical part of it.
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And the it is a very relevant situation, ok, we looked at a micro analysis system the time that it
takes for the entire droplet to reach a certain temperature which is necessary for a certain
reaction to occur which could be one of the key reactions in the step of processes, that are
relevant for that particular system.

(Refer Slide Time: 06:47)
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Charge Flux
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Then we looked at charge flux, ok. We said we biological engineers need to look at charge flux
in some detail.
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The fundamental biomolecules: &\
R ¢ l
3 s
Lipids Charged -
PTEL
Carbohydrates Many are charged
Proteins Charged
Nucleic acid Charged

Charges and their dynamics are responsible for our ability to sense our environment through sight, smell, taste, touch
and hearing
The dynamics of charges are essential for the functioning of our nervous system, our brain and our heart

Charge is a fundamental physical quantity that is conserved

A better understanding of the fundamental relationships related to electrical charges and consequent
o narallsd anerct < magnstiem K svnnctad 0 denificanthy soen the maninglator of hinlnov
)

Because the fundamental biomolecules could all be charged, ok, lipids are always charged,

carbohydrates are many of them are charged, proteins are charged, nucleic acids are charged.
And therefore we are dealing with charged particles has the fundamental units of all our
systems and therefore we need to look at charge flux is what was mentioned.

(Refer Slide Time: 07:24)
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The space between interacting charges can be considered to be influenced by the charges (Faraday)

The forces between (say two) charges are transferred from one charge to the other charge through

the space i which they are located

Thus electric and magnetic ‘fields’ exist at a point in space even in the absence of actual charges at that particular point

Lot us now consider the effect of those flekds on a charged particie, and the force expenenced by the particle

— . A mmomm oAl L

And we looked at some background you know the we derived the charge balance equation in

the same way that we derive the other balance equations.
(Refer Slide Time: 07:38)



Lorentz force law P
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- The force F experienced by a test charge, g, that moves NPTEL
Electrical v the velocity £ in such & leld 1§ gven by Loreat? lorce laiw

Magnetic

| Fag(foixph) f.51,-1
§ v piglt
F = phectric
q L : H = ma
qvxpll B el S s
: Heary » Volt-s (amp)

Resultant fedectromaneti

Before that the force that is experience by a particle that is moving in a electromagnetic field
is given by Lorentz force law, F = q (E + v Xuo H), this is we reviewed this.
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Charge density, charge flux :)
3

Let us consider 2 small volume, AV with a net charge within it
The charge density, o, is defined as NPTEL

et charge in AV
pE AV coulombm™? £q.52.-1
AV

AV Is usually chosen to be much smaller compared to the system dimensions, but large enough to contain
many charges to ensure continuum conditions

If a charge density, p, moves with a velocity, 1 the charge My, /
p @ comdombm™*s

We are more familiar with the term ‘current

Current i charge transport and is & medsure of the rate of change of charge with time

And then we define charge density, charge flux.
(Refer Slide Time: 08:04)



Charge conservation equation 47 X
Let us now derive the charge conservation equation 3{\ X 5
Let us condder the Intuitive Cartesian co System that we have earker considered . j
1 s Sy 1hat charges are moving through this coatrel vokime NPTEL

4 xehx ye By e A2
A .
Y
)
iy
dic) X

(Total) charge conservation it
F

Since 1otal charge i conserved there are o gener

And then based on those quantities we derive the charge conservation equation.
(Refer Slide Time: 08:10)
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ot p be the NET charge density Let I' be the charge flux Ry
[ 3‘ W

y =
The charge (net charge) batance equation (rates of [accumutation = input = output]) can be written as J

O(p AxAyAz
"

[r]
L v ls

1| dydr + 1| axdz 4 1y axdy

Dwiding throughout by AxAyAz and taking the limits as Ax ~+ 0, &y -+ 0, 4z

Rather simple derivation compared to the other things and we could get % +V.I’ =0, the charge

flux here equals 0, the differential form of the charge conservation equation. Then you are
introduced to the Maxwell’s relations, Maxwell’s equations which are the fundamental
equations for all electromagnetism.

(Refer Slide Time: 08:34)



How is the electric field related to its source? i’:)

The net charge enclosed by an arbitrary volume, V, which Is enclosed by a surface, S, 15 given by Maxwell’s (fisst) relation NPTEL

},,,[ A = ’MV fg.531-1
)

¢, = permittivity of free space = 8.854 x 10°" Farad m™'

Also, we know J pdV = Q

y
in other words, the net charge enclosed in a volume V, enclosed by a surface, S, Is related to the net electric flux
theough that surface

Equation 5.3.1. = 1 1 called Gauss' law

They answer these questions, first one answers how is the electric field related to it is source,
the Gauss’ law.

(Refer Slide Time: 08:42)

How is the magnetic field intensity related to its source, S’Z
the charge flux? §« g
NPTEL

Maxwell's (second) relation addresses this question

a2 Mlais @ .h 2 dA
fn.u:]od,c »LI,,J di tq.532.-1
8 s dtJ; [normal to the surface)

£q 5.3.2. = 1 Is known as Ampere’s integral law

The LHS indicates a contour integral
The RMS consists of two surface integrals

[Along the surface)

Second one answers how is the magnetic field intensity related to it is source, the charge flux,
that results in Ampere’s integral law.
(Refer Slide Time: 08:52)



-~
:;.'9'

In other words, 5 3‘ 3

the line integral (carculation) of the magnetic field intensity, H, around a closed contour A

1s equal to the sum of
the net current passing through the surface spanning the contour and NPTEL
the time rate of change of the net displacement flux density [displacement current) through the surface

£95.3.2.~ 1 can be written as
.
d¢r

32 =
n £q 532 =2

*li.u' =+

Pr . electric flux’ (historically called flux, and we just use quotes to avoid confusion in our context)

I; current

0 other words, an electric current and a time variant electric fux’ produce 4 magnetic fiedd

Then the.
(Refer Slide Time: 08:56)

How are electric field and magnetic flux related? if)
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’Ad\:-df’lu,ﬂ\li fq 5331

Maxwell's thard celationship also known as Faraday’s integral low

.
In tetems of the magnets ux’, gy, this i wiitten a8
o,
jww - f4.533.-2
de

Third Maxwell’s equation describes how are electric field and magnetic flux related, ok that is

the Faraday’s integral law.

(Refer Slide Time: 09:07)



A comment on the net magnetic flux out of any region s”f\

The net magnetic flux out of any region enclosed by a surface Is xero

{‘ wldd = 0

Maxwel's fourth relationship, also known as Gauss’ integral law
.

Then a comment on the net magnetic flux out of any region was given by Maxwell’s fourth
equation which is also called the Gauss’ integral law.

(Refer Slide Time: 09:17)
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A
When there is no input, or generation, or consumption of charge j

the rate of output of charge from a system NPTEL
must equal the rate of (negative) accumubation in the system

The net charge flowing out of the system = the rate of charge leaving through the surface boundackes of the system

- Il‘ dA

must equal the rate of decrease of charge within the system

d )
= ~f—,|_i\H
dt J,

, d
\l A = - i@ ‘\« B dA

Then we saw.
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[+ .9 dr .
I"d4 + “'I‘.‘.’Ll/n =0 tq.54~1

From Maxwell's {first) refationship, we can replace the second term on the LHS of the above equation to get

[(.0d + & [ Ve 0
A 4 - dV = .
,‘\ d(_,'

The charge conservation equation in its Integral form
The earlier one was in a ddferential form
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Some more fundamentals

A few simplifications that make our life easier especially when we deal with electromagnetism
in biological systems.
(Refer Slide Time: 09:35)
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The Maxwell's equations In differential form are usually useful i‘ 9

NPTEL

To convert the integral Maxwell equations into their differential forms, we used two theorems in mathematics

Gauss' theorem states f b-di !(V B)dv
s

Relationship between relevant surface and volume integrals

Stokes’ theorem states 4 bdf = J(E; x D) dd

5

Relationship between relevant contour and surface integrals

Such as.
(Refer Slide Time: 09:38)

i we apply Gauss’ theorem to Maxwell's first equation f tobdA = ‘ v
v

1HS ’.,Fn«i = ' (7 + tuE)av
W

. [ pav

Since V is arbitrary,

(Fuf) = p Differential form of Maxwel's first equation

The differential forms.
(Refer Slide Time: 09:40)



d
fic ¢ I e §
Now, let us consider Maxwell’s second equation H.d§ l [.dA + AN B #
] ke de ), L |
' S
X i NPTEL
From Stokes' thearem, we know é,‘ B-ds = '(! x D) dA
Thus, the LHS of Maxwell's second equation becomes I (7 x H)dA
d
Therefore, Jn' % ) di = ‘ ldd + 5| e,F.ad

The surface 5 s fixed in time. Thus, the dervative can be taken inside the integral. Also, 5 Is arbitrary. Thus,
. d;, a
(FxH) =T 4-(c¢E)
dt

Dtferential form of Maxwell's second equal

How to convert the integral forms and the differential forms and the differential forms we saw

by using the 2 theorems the Gauss’s theorem, the Stokes theorem in mathematics.

(Refer Slide Time: 09:45)
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On similar lines, the other two equations can also be converted to their differential forms § \ \
Also, we have a i 1orm of the charge conservation equation, from an carlier dervation ﬁ_ * s
Let us st all of them here A 4
NPTEL
( £) fq.5
(FxH) =1 (vE) £q.55
a7 m
(V¥ xE (e, H) fq )
it
(¥ woH) ) Iq 4

And then these were the differential forms, on top of that we said that these are fine for free
space, for biological systems, you do not have free space, you have a medium. And therefore
you cannot use the permittivity of free space.

(Refer Slide Time: 10:12)



When a medium is present A

The equations that we have seen thus far are valid in free space (vacuum). Recall that the electrical properties of
free space, ¢, and u, were used

O, they are valid when no medium & present

However, when we deal with biological systems, almost always a medsum is present

When electromagnetic fields interact with the medium (or any material), the fields Induce effects

polarization

magnetization

o the medium

You will have to use the permittivity of the medium, however the permeability of free space is

does not change in these equations. So, the same equations that we had earlier can be used just

by changing o to €. The effects that we discussed because of the presence of the medium are

polarization and magnetisation.

(Refer Slide Time:
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Why do Polarization and Magnetization occur?
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Biological media contain molecules with pasitive and negative charge contres that are separated by a distance
In other words, they have permanent dipole moments

Water, which is found in almost all biological systems, has a permanent dipole moment, and 5o do blomolecules
The distribution of diposes i usually random in 3 biological material

But, when an edectric held s applied, there is an alignment, at least partial, of the dipokes with the field

Such an alignment changes the electrical behaviour, and such an effect is callied polanzation

10:36)
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Magnetization arises due to the interaction of the magnetic dipole moments with the magnetic fiekd

Also, recall that the electncal and magnetic effects are coupled

The eartier written Maxwell's equations need to be improved when written for biological systems in a medeum, or
under non-free-space conditions

(Refer Slide Time: 10:37)

Ina madium In the presence of an electric field, there could b free charges and polarization charges

Lt the charge density due to free charges be iy NPTEL

Let the charge density due to polarization charges be  jin,

The Gauss' law for this system can be written as
l‘ ¢ r!.: = et Py
The form of Maxwell's equations for Isotropic media remain the same with the replacement of the

free space permittiity, ¢, by the medmim permittivity, ¢
Isotropic medium 1 a unifoem medium, of the medium in which its properties do not change with space/position

Interestingly, the permeability of most biological materials such as celfs and tissues, can be
Approximated very well to i,

(Refer Slide Time: 10:41)



Maost of the equations (e g Maxell's equations) that we have seen thus far are valid for the olectromagnetic waves

Comparison of relevant rates iv’)
3.

We are considenng the interaction of these electromagnetic waves with biclogical systems NPTEL

| Typical sizes of blological cells Wavelengths of relevance in the
are of the order of microns electromagnetic spectrum
(10* m) 10 m (nfralow frequency waves) to
104 m (microwaves)

Length scale of a typical eell
compared with the length scale
of the electromagnetic wave

-

biologicat

cell length

Times of interaction of the wave with the cell
are much less compared with

the characteristic time of the wave (velocity/wavelengt
wrnminnath

Then we also saw the.
(Refer Slide Time: 10:49)
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In other words, { i}

The rates of interactions of the waves with the biological entities are much faster compared to
the rates of variation in the wave characteristics NPTEL

Thus, the interactions of the waves with the biological entities can be considered to be at pseudo-steady state

when compared to the wave processes

Recall, that under PSS conditions, the variations in the rates of the much faster process can be ignored if the interest
15 i the slower process. Here the equations of intevest (e g Maxwell's equations) describe the slower (wave) process

Therefoce, we can ignore the time dervatives in the relevant equations, say the Maxwell's equations
These are called the electro-quasi-state (EQS) and the magneto-quasi-state (MQS) approximations

Electro-quasi state approximation and the magneto-quasi state approximation which

effectively delete the time variations and the time derivatives in the Maxwell’s equations.
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And they become simpler for us to use for interactions with biological situation, ok and

biological systems that is, so these are the equations of relevance. We also found that, we also

saw that these equations can be used for any situation, we saw how you could use this to get a

capacitor equation and the bile lipid bile layer membrane can be viewed as a capacitor.

(Refer Slide Time: 11:29)

An electrical potential, V, is related 10 the electric field as.

f v

Therefore Vel =F-(-¢fV)
Substituting this in £q. 5.5~ 6 Ve V)

s 7V =

Polsson equation
1 the region wher | 1
rYy=10
place equat

These equations are useful in

Right, then we saw the Poisson

analysis.

(Refer Slide Time: 11:37)

the analysis of biological systems, e.g. certain marine ocgansms such as

equation, Laplace equation which are useful equations for



Constitutive equation
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Lot us recall that Fick's law was a constitutive equation
It related diffusive flux and concentration gradient, and is valid for a class of materials

For certain materials, the charge flux is proportional to the potential gradient

£q.5.6. = 1 15 & constitutive equation, which ts vald for a class of materials

Ohm's law

Then we saw Ohm’s law as a constitutive equation, ok that is I think that is where we finished
up there. And then we saw some Maxwell application of Maxwell’s equation as | Just
mentioned. And we also said that the fundamental equations on which EEG is based, this also
derived from Maxwell’s equation. For that matter anything is fundamentally derived from
Maxwell’s equation. Then we saw the aspects of charges and solution 3 different important
aspects.

(Refer Slide Time: 12:09)
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Charge flux - charges/ions in solutions

Related to charges in solution.
(Refer Slide Time: 12:14)
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Most cefls are in an aqueous environment i#
Thelt contents are fluld

NPTEL

Thus, aspects related to charges/ions in solution are important to consider
We will discuss three key concepts In this context

1. Electroneutrality

Oppositely charged lons could be present in a solution

There are strong forces of attraction between the opposite charges

As long as the number of positive charges equals the number of negative charges, due to the strong
force of attraction between opposite charges, the net charge in that system is zero (electroneutrality)

Thus, an electrolytic solution cannot set up an electric field although (t contains charges because the
number of positive charges equals the number of negative charges

Or ions in solution, first one was electroneutrality.
(Refer Slide Time: 12:18)
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laxation t W
2. Charge relaxation time L ¢
Let us consider a electrolytic solution (medum) which Is homogenous, lsotropic, and conducting NPTEL

Letus say a charge density (say o, ) 1§ added to the above solution
Since the solution Is conducting, the charge will be conducted away 10 result in a new equilibrium
Let us estimate the time that it takes for achieving the new equilibrium

According to Ohm's law, the charge flux

[=wE fq.572.-1
E=-fv

Note: the electrolytic solution Is a homogenous conductor (or k, Is constant)

#l= kf 8

The second one was charge relaxation time and the third aspect.
(Refer Slide Time: 12:23)



From Gauss’ law (F k) = p q,572.-3
p » charge density at any time, t
Substituting $.7.2-3iInt0 5.7.2 -2
o1 %
f.r P £9.572.~4

I we assume that upon application of j,, the increase in charge density in the solution i uniform, we can use
the charge conservation (charge continuity) equation

o

V7=~
at
Substituting 9. 55 -5n572-4
O
(Refer Slide Time: 12:27)
The solution P = Pe “|’( l.’] £q.572.-6

‘
Iy = i the charge relaxation time
k

For water
k=0015cem’
€+ 80¢,» 80X BASX 10" Fem!
Then, 1, =07m

Charges can be relaxed rapidly

Charge relaxation needs to be considered while designing systems in which the biological materials - cells,
bomolecules, etc., nteract with ehectrical fields such as in electrophoresis
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3. Debye length Fg
%
Say, we have 3 specially made lipd layer with uniform surface charge density stretched on a flat plate at x = 0 \-'. ‘;

NPTEL
This Npid layer is bathed by an electrolytic solution with cations and anions NPTEL

Near the charged surface, mobile lons t of fixed charge {counter ions) will be attracted

I other words, near t ) he solution where electro neutrality does not hold
The region will be charged charge of the counter-lons
Debye length: the length of the region in the solution neas the charged surface where electro-neutrality does not hold

Weiss (Weiss TF. 1996, Cellular Biophysics. |: Transport, MIT Press) has derived an expression for the Debye length

Let us just state it here

€ = Permitivity Typical Debye leagth: 104
2+ Charge

F = Faraday’s constant
¢ = Concentration of cositive or neative ions at ‘infinite’ distance in the solution where electro neutrality l’

Was the Debye length, ok. The region where the electroneutrality does not hold especially
when you have a surface of when you have a charge surface in solution, ok. These are all
relevant aspects for analysis, I think this is what we saw.

(Refer Slide Time: 12:49)

In addtion, It is good to realize

Charge carrying biomolecudes i a systom do not generate an ekectric fiekd because they are shielded by counter ions
|as a “do layer countes lon cloud”)

However, when an ebectric field is applied, the “doutsie-layer countes ion cloud” surrounding the charged bio molecule
§ots dsturbed

Then, the charged bromolecude expenences the presence of the fleld and moves in responie to it

Till this chapter, we also saw that it is good to realize charge carrying biomolecules in a system,
do not generate an electric field because they are shielded by counter ions as a double layer
counter ion cloud. However when the electric field is applied the double layer counter ion cloud
surrounding the charged biomolecules get disturbed. And then the charged biomolecule

experiences the presence of the field and moves in response to that ok.



Ok, we will take a break here, I think it is time then when we meet for the next lecture the last
review lecture you would look at multiple driving forces being responsible for a flux or multiple

fluxes, ok. Predominantly a flux that is the review of the last chapter, see you then.



