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Lecture-79
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Momentum Flux

Welcome to the second review lecture. Since the courses consist of a lot of information, a lot of
heavy information, | thought of breaking up the review into shorter lectures. That would be much
easier for you when you want to look at the overall course just by looking at the review part of it.
In this lecture, we would look at momentum flux reasonably in brief we had spent a good amount

of time on momentum flux.

In the previous review lecture, we looked at mass conservation as well as mass flux. And I think
before | begin this, | should also tell you some aspects of learning, I think you need to take that as
a part of you need to internalize that and only then would you be able to see this course in proper
light, so let me just quickly go to that.

(Refer Slide Time: 01:32)
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We talked about learning aspects and in a class, different people have different skills and so on so
forth. We said that the Gaussian distribution is a typical representation n number of students versus
relevant abilities. And this typically holds when the number of students in a class is 15, 20 or more,
ok. I have seen this happen time and again the exact nature of the curve could be slightly different

with the Gaussian as a very good first approximation.

This we all understand in a class which deserve in a completely heterogeneous class which is this,
this I am sure would hold. The relevant abilities include knowledge in a domain and high learning
skills, higher learning skills include analysis, application, synthesis. And maybe I think this covers
most of it and effective skills and psychomotor skills also as and when needed we could restrict
our view to analysis application synthesis as high learning in this for this particular term relevant

abilities as well as knowledge in the domain.

The most students would be somewhere here, as indicated by this graph itself. However there are
quite a few who would be here and quite a few who would be here, ok. The fraction is small but
when the numbers are large, the actual numbers could be large. These people may feel bored with
the repetitions because they have gotten it quickly. These people would need repeated exposures

just look at the same material a few more times to get there.



Again this is entirely course dependent very specific thing, this distribution maybe rather the
person who is here for this particular course, may be here or will be here for something else
altogether. | could be somewhere here for this course of this stage whereas probably for singing
and dancing | could be somewhere here, ok. So, it is not a judgment of the student, it is just a

statement of fact.

And statement of fact more from the point of view of improving the learning what needs to be
done to improve, so that we all get to a certain stage, that is the whole idea | am giving you this.
And of course | said that most strategies, most learning strategies, address students who are in the
average domain here, the average students as they call them. Whereas | could also address these

people may not be to the extent that | can do in a regular class.

But I have attempted some of these things here, there have been a lot of strategies that have been
oven into this course, it is just not giving you information alone, the way it has given the way
problems are placed, the way the problems are solved and so on so forth.
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All go into improving the learning of students, so that whatever the distribution is or was at the

beginning of the course becomes this at the end of the course, that is the whole idea or this is the

central themes central basis on which | work, | have no other interest just to move the average to

the right as well as narrow the distribution, ok. I think this needs to be kept in mind, so that the

way you approach suppose if we find a little uncomfortable just redo that.

If you are comfortable, if you are too comfortable with it just look for bigger challenges it is a

class and we need to take the entire class together, | teach the average level and so they should be

fine, which is most of the students, ok. Now let us look at momentum flux aspects.
(Refer Slide Time: 05:40)

We know that a fluid (either a gas of a liquid)

% 8 substance that takes the shape of the vessel containing it

All real fluids have a property called viscosity

To understand momentum flux, let us consider the following idealized scenario

Two paral

at plates with a thin layer o

The bottom plate is carefully moved in the x direction with a reasonably small velocity, v,

The bottom most liquid layer adhering to the plate
will move with the same velocity as that of the plate

e 10 the shear force exerted by the
b yer of fluld, influences the velocity of
the fluid layer above it

The shear stress exerted by the layer above the bottom
most layer, influences the velocity of the layer abowe it

and so on
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We talked about fluids and we said we looked at the case where a thin layer of fluid is placed
between 2 parallel plates, I mean finite. And then the lower plate is moved with a velocity very
low velocity in the X direction positive X direction. The upper plate is held constant and with this
scenario, we could introduce the concept of shear stress. Because the layer that is closest to the

lower plate will move with the velocity of the plate.

And that influences the layer above it and that will start moving with a slightly slower velocity.
The second layer influences the third layer through the shear stress and that will start moving at a
slightly slow velocity compared to the second and so on and so forth. To result in this kind of
linear velocity profile, we also talked about our terminology here tyx the first subscript is for the

direction of action for first approximation.

The second is for the direction of motion, this for initial understanding later you it gets a little
complex as you already know and this is the shear stress.
(Refer Slide Time: 07:07)

Recall that

Shear (or normal) stress, is force per unit area
That force is rate of momentum change (from Newton's second law)

force MLT? Mar-Yr!

area L*

Rate of momentum change

area

= momentum flux

Then we saw how the shear stress is can be interpreted as the rate of momentum change per unit
area or the momentum of flux.
(Refer Slide Time: 07:18)
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Dimensionally, the shear stress {force per unit area) can be written as
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Thus, the dimensions of viscosity are ML'T

And then we started looking at some properties of fluids themselves. We said that there class of a
large class of substances which follow the Newton's law of viscosity. Newton's law of viscosity is
a relationship between shear stress and the velocity gradient or the shear strain as it is called. And
then it is a linear relationship between the 2 with the line passing through the origin and such a

fluid is called a Newtonian fluid.

And also this is a constitutive relationship similar to the Fick’s first law of , flux the momentum
flux is directly proportional to a velocity gradient and the constant of proportionality happens to
be the viscosity here, that is what he said. Viscosity is the fundamental material property and you
could back out the units for viscosity as ML T-! using the dimensions of these various other terms
here.

(Refer Slide Time: 08:29)
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So, this is our Newtonian fluid in the rheological characterization which is a relationship between
the shear stress and the shear rate, Newtonian fluid.
(Refer Slide Time: 08:41)

Not all fluids exhibit Newtonsan behavior. Such fluids are called non-Newtonian fluids
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NPT
’ A Bingham plastic does not flow until a certain minimum
shear stress, 1,,, Is applied L.&. the shear rate is zero
Bingham plastic until 1, < 1

1, 18 called the ‘yleld stress’ for the material
T =T =p= i |r,,|> fq.3.1~2
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Newtonian
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And then we saw another kind of fluid are being a plastic which needs a particular threshold shear
stress to manifest a velocity gradient in other words to move, when it moves there is a velocity
gradient. That will happen only when a certain threshold shear stress is reached or not, that is called
the Bingham plastic and this is the expression for the Bingham plastic Tyx = o -p(dvx/dy) if Tyx is
greater than to. (dvx/dy) = O if the shear stress is less than a threshold shear stress. So, this is the
mathematical representation of a rheological representation of the Bingham plastic in a

mathematical form.
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Then we looked at the other types of fluids that are there, one is the pseudoplastic fluid, the other
one is the dilatant fluid. The pseudoplastic fluid and the dilatant fluids can be described by using
a power law their rheological relationship is given by a power law. That is something like this Tyx=

|dv’“| n-1 dv’“ , all these can be considered together times of course the velocity gradient.

Of course you could take the minus along with thls —=, ok. Here this term m| | "1 js called the

apparent viscosity. And if n equals 1 this term disappears and m equals u then return into viscosity.
If nis less than 1 then you get the pseudoplastic behavior, if n is greater than 1 you get the shear
thickening or the dilatant behavior. So, these are the kind of fluids.

| n-1

Mapp = m|—

(Refer Slide Time: 10:45)



Some fluids show time-dependent behaviour \Q
The shear stress depends on the shear rate (viscous) as well as on the strain (elastic of Hookean) ); ¥
A common constitutive equation to describe viscoelastic fluids, is the Maxwell mode! A j
NPTEL
Uy, ( dv,
yt=—= | —— fq.31.-5
U6 o dy

G is the shear elastic modulus (Nm?)

The synovial fluid lubricates joints in the hus y. It shows viscoelastic behaviour

It consisting of proteins; hyaluronic acid i t! mportant protein in the synovial fluld

Mucus and vitreous fluid in the eye exhibit viscoelastic behaviour

Videos:
Introduction to Viscoelasticity: hitps.//www.youtube ¢
Fluld Dynamics: Non-Newtonlan Flulds: hitps://www.youlube cor )t

In addition you have something called those are some of the videos. In addition there are fluids

where the shear stress depends on the shear rate as well as the strain and the Maxwell’s model that

- dTyx . . . . . .
is given here Tyx + % ;i = u(-‘;—’;f,), this is the one that describes a viscoelastic fluid, ok, this is

called the viscoelastic fluid. Examples of synovial fluid and hyaluronic acid and so on so forth

mucus, ok.
(Refer Slide Time: 11:22)

Blood is an important biological fluid. It is complex
1t consists of plasma, which is a mixture of liquids, proteins, and cells such as erythrocytes, leukocytes and others.
Blood behaves partially as a Bingham plastic, Le. It exhibits a yield stress, and behaves partially as a viscoelastic fluld
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The complex rheological behaviour of blood also artses from the ‘dumping’ of erythrocytes (red blood cells) due to

fibrinogen on their surface, apart from the complex composition of blood. NPTEL

Blood rheology is an entire field in its own right

The Casson model can be used to describe blood rheology
dvy|"*
Kty £q.3.1.-6
dy
T 15 the yield stress

The yield stress depends on the volume fraction of erythrocytes in the blood
The volume fraction of erythrocytes in blood is usually called the ‘hematocrit” (typical value: 0.4)

At lower shear rates, say < 20 57, blood shows complex behaviour (Eq. 3.1 = 6 is necded)
At higher shear rates, say > 100 *, blood can be assumed well to behave as a Newtonian fluid

Video: Whole blood viscosity, links (o cardiovascular n:y
hit WWW VOutube com/wat WICKdid cO

Then of course we talked a little bit about blood being a very complex fluid . Also interestingly, if
the shear rate is less than 20 times per centimeter with a shear stress is less than 20 yeah no shear

rate is less than 20 second inverse. Then it behaves as a complex fluid, if it is greater than 100



second inverse then a Newtonian fluid is a very good approximation to the behavior of blood ok,

then video is given.
(Refer Slide Time: 11:57)
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Types of flows

Also we said that the type of flow is important for the characterization for our understanding of
the fluid behavior and then design an operation and so on so forth.

(Refer Slide Time: 12:11)
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The way we understand the fluid dynamics depends a lot on the type of flow experienced by the fluid S #}
3
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There are two types of flow
NPTEL

1. Laminar (flow in layers, corresponding to the geometry - flat, cylindrical, etc.)
2. Turbulent (flow when pockets of fluid tumble over each other during flow)

Reynolds’ flow visuslization experiment (1883) Video: Reynolds Apparatus (Vertical Mode)

Reynolds number, a non-dimensional number, can be used to predict whether the flow will be laminar or turbulent

Ne L fq.32.-1

p* density of the fluid K

elocity of the fl

V= velocity of the fluid In pipe flow (and only in pipe flow) the following numbers hold

05 ppe daméter N, <2100 Laminar flow

e Viscosky of the fiuid 2100 < N,, <4000 Transition (can be laminat of turbulen
N, > 4000 Turbulent flow

This is also laminar fiow: Video: Digitally controlied laminar fountain in Burj Al Arab bullding ,

: ﬂ

So, there are 2 major types of fluids one is called laminar which is flow in layers depending on the
geometry of the system, the layers could be either flat layers or they could be cylindrical layers as

in a tube or it could depend on the geometry of flow. Essentially layers or it could be turbulent




when pockets of fluid tumble over each other during the flow ok. So, these are the 2 types of flows,

we look predominantly at laminar because it lends itself to a certain understanding.

A turbulent flow we saw how to approach it and then we had to resort to not so rigorous approach
to make use of or to attempt to design with turbulent flow and so on so forth. Let me briefly get
there of course, we talked about the Reynolds number which is nothing but the ratio of pvd /u, p
and p density and viscosity of the fluid, velocity of flow and the diameter of or characteristic

dimension it could be the diameter of the tube the distance from the starting point for a plate
whatever it could be ok.

This can also be interpreted as the ratio of inertial forces to viscous forces in a fluid, ok. And only
in a pipe flow if the Reynolds number is less than 2100 you will have laminar flow, if the Reynolds
number is between 2100 and 4000 we are not too sure, we called it the transition regime. If it is
greater than 4000 then it is an turbulent flow, this is been found, ok.

(Refer Slide Time: 14:13)
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Shell momentum balances

Then, we started looking at solving problems, essentially we are interested in getting velocity
profiles and shear stress profiles. That is the big insight that we get from these analysis and they
are very helpful, useful for design an operation. There are 2 major approaches as we have seen
earlier in the case of mass flux, one is balances over representative shell or shell momentum

balances in this case.



The second one is application of the conservation equation, in this case application of the equation
of motion which is the equation of the conservation of momentum, Newton's second law whichever
way you want to call it, ok.
(Refer Slide Time: 14:56)
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Momentum is a conserved quantity
Thus, momentum balance can be used as a principle to obtain useful relationships

y /.’Jll%

On similar lines as shell balances for mass, we will first do shell balances for momentum NPTEL
That would provide good physical Insights into the process

We will do balances over a thin, geometrically representative shell of fluid

The thin, representative shell is the ‘system’ of ‘control volume’ over which the momentum balance is written

To understand the application of the shell balance technique, let us consider the case of flow in a falling film
over an inclined surface
This flow has practical applications = the Bostwick viscometer uses such a flow to measure viscosity

In the earfier chapter, when we balanced total mass over a syslem (or control volume), we wrote

(Rulvu/ total mass ) {Run‘ of total mu\\) (Ra{e' of total mass ) -

out of the system into the system accumulation in the system

E -
So, when we applied the shell balances and gave us as expected a very good physical feel we could
visualize the forces, how they related to each other and so on so forth. Only thing is that it is the
approach becomes cumbersome especially when we have the cylindrical coordinate system and
the spherical coordinate system, ok.

(Refer Slide Time: 15:22)

We know from basic physics that momentum is & conserved quantity In the absence of external forces
When external forces are present, according to the Newton's second law, the rate of change of momentum Is equal
1o the (vector) sum of the forces that act in the direction of motion, on the system or the control volume
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NPTEL

(l(ulr-r[ mwm'n(um) (Ru!r of mmnrnrum) (Rulr of momentum ) (.\umu[ forces acting
. + =

out of the system (nto the system accumulation in the system) — \on the system

fq.33.-1

Under steady state (SS) conditions, the accumulation rate is zero, At 55, transposing the above equation, we get

(Ruu'n[ momentum ) (Rut(' of mnmrntmn) (.\'um of forces u('lm_«)) 0
into the system out of the system on the system £

Momentum can enter/exit the shell (system) by
(1) Molecular means (momentum flux) and/or
(2) Convection (flud motion)

Let us write the exoress the above in terms of auantities that are convenient for us ’




So, this is the momentum balance equation, a useful form of that rate of momentum out of the
system minus rate of momentum into the system plus the rate of momentum accumulation in the
system equals to sum of forces acting on the system, ok. And this we had applied to the shell, in
this case a cuboidal shell. And we said that the no sorry this was shell balances, right yeah.

It is cuboidal shell but this was let me see which flow I applied it to, yeah it was flow over a flat
inclined plane, Bostwick viscometer right. We said that there are 2 major means by which you can
account from momentum. One is the molecular means, the other one is convection, ok which is a
bulk flow which is a velocity there is mass associated with there is a momentum. And in the case
of molecular means, we have already seen that the shear stress is nothing but the momentum rate
, momentum flux. So, there are 2 different contributions, major contributions.

(Refer Slide Time: 16:31)
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And we looked at the flow over a flat plate, well developed flow over a flat plate, the thickness of
the flow layer is a small delta, this is the direction of gravity, this is the direction of flow z. And
there would be changes in velocity and shear stress in the X direction, direction that corresponds
to the thickness of the liquid layer.

(Refer Slide Time: 16:58)



um = (area x momentum flux)

Now, let us express the vanous term in the momentum balance in terms of convenient quantities s

SELI L,
A 2% ¢
r s"l:-l’/

By molecular mechanism:

Rate of 2- momentum in, across the surface at x (LW) 14,1,
Rate of 2 momentum out, across the surface at x+Ax (],l',') ru!wlx
By convection:
Rate of 2- momentum In, across the surface ot 2<0 (W Ax v,) (pv)| =0
Rate of 2- momentum out, across the surface at zeL (W Ax v,) (pvy));=1
1L\ (M (L [ L\t LI /1)
(35 PHRE PRI EY ”

i s

Then we went systematically wrote down the terms molecular mechanism terms you know area

times the shear stress that should give us the shear the momentum rate. And for convection we had
used the p vx , Vx as the momentum flux times the corresponding area and that would give us the
momentum rate. However we wrote it, we combined it slightly differently for it to make some

sense later.

So, we wrote it like this and | had shown you that you get the you know this is momentum M L/T
IS momentum mass into velocity, momentum rate and momentum rate, this is you take all these 3
together it is momentum of flux. Therefore you need to multiply it by the area to get your
momentum rate, ok.

(Refer Slide Time: 18:00)



To find forces:
Free body diagram
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The liquid layer is open to atmosphere
It is & thin layer, with a m-gl»(,-ulr vertical distance
Let us assume (p, = p,) Is negligible

The notmal force Is not relevant to the direction considered

We ignore the force due to difference in pressure because the film is thin
The gravity force is the only significant one

If there are other forces present, they need to be included here

Gravity force acting on the fiuid in the direction of motion (LW Axp) g cosp ~

Ih ~§\ . ﬁ i \

So, then we looked at a free body diagram to work out the forces that are active. Then in this

situation we saw that the pressure forces will cancel when if we consider the thickness of the film
to be very small, right. And so the only main force that acts in the direction of motion is a
component of the gravity. So, this is the only force that is relevant here for our situation.

(Refer Slide Time: 18:37)
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Substituting the above into the momentum balance, Eq. 3.3. - 1, at S5, we get

oy,

)
4

W], = WT |t WX p 1 ],0 = WAXP 1], 4 LWBKpgeosh=0 fq.33.-2 NPTEL

We are analysing when v, # f (2). Thus the 11 and IV terms on the LHS cancel with each other.
Next, if we divide by (\W Ax) and take the limit as Ax = 0, we get

(Tealvos Tl
lim L) =pgcosf
\ Ax

Ar0
dr,,
— =g cosp fq.33.-3
dx
The solution is
ta=pgxcosf + € fg 33 -4
To evaluate C,, we need a boundary condition ,

Then, we wrote the balance and then got an expression for the shear stress.
(Refer Slide Time: 18:46)



%

A, %,
i G

At x =01 the liquid-gas interface

Consider the top-most liquid layer, and the layer of gas (air) that s in contact with it. They can be assumed to
stick to each other, and thus move with the same velocity. Thus, the velocity gradient and hence the momentum
flux atx =0, is zero

A standard boundary condition that can be used ot liquid-gos interfaces Is that the momentum flux

(hence the velocity gradient) in the liquid phase can be assumed to be zero for most calculations.

NPTEL

Atx=0, 1, =0 £q.33.-5
This boundary condition applied on to the solution given in Eq. 3.3. = 4 yields, C, = 0. Thus, y \
Ty = pRXCOSH fq33-6 A~
/ /
This is the shear stress distribution, Ty, = [(x)

To obtain the velocty distribution from the shear stress distribution, we need a link between the two
That link is provided by the constitutive equation. For example, for a Newtonian fluid

dv,

Tyy = ==
xz L i

- . == . et

As this the complete expression was after we got the constant of integration. That was

Txz=pgXcosB, right. And then we said that we also are interested in the velocity profiles, we have
the shear stress profile. Therefore you need a relationship between the shear stress profile, shear
stress and velocity to get the velocity profiles. And that relationship is directly with the Newton's
law of viscosity because we have considered a Newtonian fluid.

(Refer Slide Time: 19:18)
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Substituting the constitutive equation into £q. 3.3, < 6, we get

dv, g cosp
dv, ‘_(m‘m\[).‘ Gk NPTEL
dx W

The solution of the above D.£. is

g cosf\
1',:»([-"—‘)1'1 G Eq.33.-8
2 ,

(; can be found by another standard boundary condition: at the solid- fluid interface, the fluid velocity equals
the velocity with which the surface itself is moving
The fluid is assumed to cling to any solid surface with which it is in contact (‘no-slip’ boundary condition)

Atx=6, v=0 fe.33.-9

By substituting the boundary condition into the solution, £q. 3.3, ~ 8, we get

And when we substituted that we got an expression for the velocity profile, ok.
(Refer Slide Time: 19:23)



. [pgcosp) .
5
@ ( 2 )'

. *kll%{

I p NPTEL
Therefore, v, = l’.‘lﬂ - (X) £q.33.~10
2 & D
/
Where does the maximum in velocity occur? & g
Atx=0 &
pgdicosp
Venax ™ s = fq.33.-11
2

The average velocity over a cross-section of a film can be found through

w b §
vdxdy |
l',...,=L’,L"’ =3J"'d’ fq33-12
fy fydudy ]

(W can be cancelled in the numerator and the denominator)

The velocity profile was a parabolic velocity profile and then we backed out the maximum velocity
as well as the average velocity and the flow rate, right.
(Refer Slide Time: 19:34)
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By substituting £q. 3.3, ~ 10 In £q. 3.3, - 12, we get

- pg6icosp x| X k
Vuang = = 1-(3) d(g) NPTEL
]
_ugh"(u.\[( (x) l(x)-"
- 2 6/ 3\ K
pgdicosp
Peag = = fq.33.-13
The volume flow rate, Q is given by
el 8% cosf
0= ” vydrdy = WEb, 40y = WS 22 o fq.33 - 14

! 3u

So, that was through shell momentum balances.
(Refer Slide Time: 19:50)
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Equation of motion

”~

And then in the next chapter or the next lecture, next sub chapter, we derived the equation of

motion.
(Refer Slide Time: 19:58)

As mentioned in the chapter on mass flux, shell balances can get cumbersome, especially In cylindrical and

&
spherical coordinate systems s"
As before, let us derive a reasonably general equation of momentum balance (strictly, Newton's Il law) that 3 b3
Ry
can be directly used LN

That egquation of momentum balance is calied the "Equation of Motion'
>
Consider Cartesian co-ordinates and the same cuboldal element that we considered for mass balance NPTEL

We derive the equation of motion by considering a generic situation, just this the same way that
we did for mass balances or the equation of continuity. And then the these are the direction of
flows, the flow in the x direction entry exit, the flow in the y direction entry exit and the flow the
z direction entry exit, so very general situation.

(Refer Slide Time: 20:21)



As discussed during shell momentum balance earlier, momentum flows into and out of the volume element by two means:

« convection (by virtue of fluid flow)
*  molecular aspects (by virtue of velocity gradients)

Momentum rate by convection
()il ts momentum flux (mass flux x velocity; also check through units)
The rate of momentum (momentum per time) i ‘){:(‘vl'yl. |ff magnitude of the area vector

kgmy\m
Units wise: m"* (——)—

There are three components in the x, y, and ¢ directions to the rate of momentum vector.
Each of those components is, In turn, composed of three other components, as shown next

S
&
o
3
| %

NPTEL

And then we wrote the contributions of momentum flux due to convection and molecular aspects

in terms of the variables that we can measure we are comfortable with and so on and so forth.

(Refer Slide Time: 20:37)
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NPTEL

Then we did this, we saw that this term the convective term for the momentum of flux has 9

different components. So, this is the x momentum rate, y momentum rate, z momentum rate. The

X momentum rate itself has 3 components, y momentum rate has 3 other components and so on,

alright.
(Refer Slide Time: 21:01)



First, let us consider only the x-component of momentum rate
We can later extend the same to the other components

Momentum rate due to convection ‘,\ , by By 10 A
Ry 7o
Entry rotes: "’ L.
x direction (through the face at x) (l”'-)'.ll dydr g \ .
y direction (through the face aty) (pwy)ws |‘ Ardz
2 direction (through the face at 2) = (pwy)v, |, Ax ay X
Exit rates
x direction (through the face ot x+Ax) (pu v |m“ Ay Az
y direction (through the face at y+dy) = (pr‘.)r,l Axdz
yody
¢ direction (through the face at 1+82) = (m‘,)l'.lhu Ax dy

The net x-momentum rate due to convection is

(Refer Slide Time: 21:05)

Momentum rate by molecular aspects

for better understanding, bet us consider the force that causes the shear stress.

NPTEL
4 _,’\-om yo by 2 A

Let us take
the force that acts on the face ot x a3 F*,
the force that acts on the face ot y as F*, .

the force that acts on the face at 2 as F*,

Each of these forces would have 3 (x, y and 2) components

Similarly we looked at the momentum rate by molecular aspects for that we looked at the force.
(Refer Slide Time: 21:11)



Dividing the force components by the appropriate dreas et
will give the components of the stresses &
.S §o
F° 3
xx Tyx "
F3,y  components of F* Ty components of 7.
yy { COmy . X Xy ponents X NPTEL
0 T
F g Xz
'S
F 23 Tyx
F*yy t components of FS Tyy| components of 7,
5 r\'l
Fy,
N
l’ F43 r.‘l
s s . . 2
F*,y t components of F3, Tey components of T,
oS Taz
Fy
1;; denotes shear stress when | # |, and it denotes normal stress when | = |
Both shear stress and normal stress arise due to molecular aspects
Demer + sulata - " o venrine

The surface force that causes the shear stress or the momentum of flux, sorry. The components we
saw, then if we divided by the area and we got the stresses both normal stresses and shear stresses.
Also it was pointed out that the normal stress is a different quantity, different physical quantity. It
is different from pressure although they could be added for many calculations and so on so forth,
they are 2 different physical quantities.

(Refer Slide Time: 21:45)

Let us first consider only the x-component of momentum rate due 1o molecular aspects

ity
5 Y

Entry rotes

xdirection ,“‘ AyAz __’
; NPTEL
y direction v"‘ AxAz
1 direction ! l Ardy
Exit rotes
x direction ".!'4 5 AyAr
y direction ""\‘;,MA(
ta|  ardy .
1 direction "

Net x-momentum rate due to molecular aspects:

dydz

:,,‘ | » i | + A\A:[:\,L - |.,[”M|-.h.\r|f ,: “Tyy

Then after a balance.
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Forces:

We will consider two important forces that usually act:
+ Muid pressure
. gravity

Resultant force in the x-direction
A)‘Al(p|‘ = pln\‘) +pg,Axdydz

Accumulation:

Accumulation of x»:momentum within the volume element

o
mvm(' x )
/]

And.
(Refer Slide Time: 21:53)

Let us recall the general momentum balance equation (Eq. 3.3, - 1)

(Rulr of momentum

) (Rurr of mmm'nrum) (Rulr of momentum
out of the system

into the system

Substitute the various terms for the x-direction, divide by Ardyds
And take the imitas Ax,dy, 4% < 0 toget

By a lot of simplification using various different physical relationships such as the equation of

continuity as well as mathematical representations.
(Refer Slide Time: 22:04)

accumulation in the

If there are other forces acting on the volume element, we need to consider them as additive terms in each direction,

p=1pT)

) o (.\'um of forces acting

system on the system

apv,) (o(,,r,l-,; alpwyvy) J(pv,x',)) (o:,, oy, A\ dp
e (8 o0 | e i oy e | wo- | o dp o dp e | v e fq.34.~1
at dx dy 9z dx  dy MY i :
Note: £q. 3.4, = 115 for the x-direction alone ¢
If we do a similar exercise in the y and 2 directions, we would get
0(pvy ) a(pvy "v) a(pv, "'v) oo,y ) (H,, (‘Y“ 01,y dp
= + + + + - ==+ plly
ot dx dy I3 (e RRAY ) A A
dpvy) Apugry) pwyu,)  dpwyv,)\ [0r,, Ity 1\ Op
=7y YRR R = "3ttt
e oy dy ()] dx dy &) 0




In compact, vectorial notation

(V)
or

= —[V.pW]

—[V.7]

Vectorially, {;; )
L) ) . ,
hdd AL/ - 'lf-""‘}] = Iv_fl . dp + 0d £q.34.-4 NPTEL
Rate of Rate of gain in Rate of gain in Pressure Gravitational
increase in momentum momentum by force on the force on the
momentum by convection viscous effects element element
per unit volume per unit volume per unit volume  per unit volume  per unit volume

-Vp

+pg

Rate of Rate of gainin  Rate of gain in Pressure Gravitational
increase in momentum by  momentum by force on the force on the
momentum per convection per  viscous effects per element per element per
unit volume unit volume unit volume unit volume  unit volume

(3.4-4)
(Refer Slide Time: 22:38)

Let us look at equations 3.4-1, 3.4-2 and 3.4-3 again i;‘
We can recognize that { has 9 terms i ™

15 0 second order tensor with 9 components that can be represented by

T Ty Ta
t= ("w Tyy r_vl)
T Ty
U1 I a new concept
It is neither a dot product nor a cross product
Look at equations 3.4, = 1 to 3 (first terms on the RHS) to understand that i'F has 9 terms

¥l is knawn as the ‘dyadic product’ and is a special form of second order tensor
A dyadic product of 2 vectors i and W is

VW Wy Uy
oW = WWe pywy bW,

YW Uy W,

NPTEL

See Appendix 1 for tensor algebra details

See Appendix 1 for dyad algebra details




Then | think we looked at these terms which are different p vv and t which are actually second
order tensors which have 9 components, we saw some aspects of those. And then if you want to
know the tensor algebra, we were directed to the appendix of the textbook.

(Refer Slide Time: 22:59)
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etuswrite Eq. 3.4.~1as Y j
)  [d(pvevy) pvyy,)  Apv,uy) oty 01, 0\ O NPTEL
(L) o) o)) __ (0 B0 D) B,
o dx dy (3 dx dy oz dx

The LHS can be expanded as

aw, v, apy o, v, v, apy )
) o 4| py 0 + v U =4, ¢
ot 2t \Phe gy ax Py ay P 0z
F I dpv, dpw, dpw, ( I, v, m‘)
=Pt Ut 1, + + +( ooy —+ pv +
TR i dy or ) \Prgy TPy Ty
v, dp v, dp W, p o & b
Pttt pam bt p=t b P ¢ olw
at ot ax ox " dy dy "oz )z o0x
dp dv, dv, v, dp dp op\) ov v,
=% PV * L L + oy ¥ (P ty
at o dy oz x dy az/) o, " ox
Dy P N\ l"u
=(E)+p where =0 vy Vy ] + v,
(E)+p; at o Yoy 1ax) TP\

So, this is the dyadic product, the product between 2 vectors, ok, it is very different from either a
dot product or a cross product that you are familiar with. This is a dyadic product which results in
9 components. Then, we went through simplifications as | mentioned.

(Refer Slide Time: 23:19)
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Dp
—-= =)
TR

Using the equation of continuity

(V.)

7 /J'I/l%

the first term on the RHS of the previous equation can be written as the negative of the second term on the RHS. Thus,

dv, duy dv, dv, dvy du,
Emy, p( + ) -p;,‘ + = 0
ax dy N 0 dy 0
Thus, £q. 3.4~ 1 con be written as
Dy, dr,, Oty dr, dp
Dt dx dy dz ) ix

The other two components (y and 2) of momentum rate are expressed as above and added together, to get

|F' r| Vp + pd fq 34,-5

Viscous forces on
the element

Pressure
* force on the
per unit volume element

per unit volume

Gravitational
force on the
element

per unit volume

' "e&" ‘



3 :

p = —[V.7] ~Vp +pg
Dr
Mass , Viscous Pressure Gravitational
—— x Acceleration i
Volume forces on force on force on
the element the element the element

per unit volume per unit volume per unit volume
(3.4-5)

So, this has been written in it is various components or in various coordinate systems and all those
are available as tables, table 3.4.1 to 3, you are asked to make a copy of those tables and keep it
for your reference. Because as you saw we refer to them very often whenever we are looking at

velocity profiles or shear stress profiles and so on and so forth, we need to refer to them very often.

Because essentially we have brought down the equation of motion or that principle the momentum
balance principle onto these equations reasonably general in applicability. And all we need to do
is go to the table, pick up the relevant equation, cancel the irrelevant terms and you directly have
a governing equation well grounded in the principles that would lead to a robust analysis, so that
is the advantage here.

(Refer Slide Time: 24:48)

If the interest is in finding velocity distributions, we need to substitute the stresses in terms of velocity gradients

and fluid
We need to realize that the simple relationship between shear stress and a single shear rate in the 2-D form of

the Newton's law of viscosity,

laminar flow in

of shear stress on various shear rates

f we substitute the expressions from Table 3.4. < 4 In the momentum balances for the 3-directions, we would get

~




So, | had shown you how this can be applied to the case that we have already seen which is the

flow over a flat plate to get relationships in a useful fashion without expanding too much effort
you could do that.

(Refer Slide Time: 25:06)

1777)
2
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r t'um!"'/

"j £q.34.-6
| oz ix dz | ox
NPTEL
Dy ) by, O, ] vy, 2 . | (v, o Ip
+ i) 4 - + s £q.34.-7
"t X ‘( y ] x Jy "3 \Ml‘ ' it “(J/ ! '\‘) )y Py 3
it | dy, dy J dv, v dv. r‘()
" + + } [ y £q.34 -8
Por " o (,n F) ] > "[‘\/ 4‘:) M it L) ol 4

The above equations of motion £q. 34, -6 o 8,
equation of state, p = flp), and

variation of i = f{p)

completely determineg the pressure, density and velocity components in 8 Newtonian flud m laminar flow

Which may not be the case if you use shell balances. Then we looked at the simplifications for a
Newtonian fluid in laminar flow.
(Refer Slide Time: 25:16)
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When p and y are constant, since V.7 = 0 according to the continuity equation, the equation of motion can be written as By
g
g
-
~
DY - . f2.34.-9 > 4
— LT Q. 34~ et
o uPie =Vp + pg NPTEL

This is the famous Navier - Stokes equation

If viscous effects are also not important, F. = 0. Then, £q. 3.4.~ 5 becomes
zv',. ¥ pid £9.34.-10

1%

This is called the Euler equation

And that is when we get to an Navier-Stokes equation, if p and u are constant. Also if the shear
effects are also not important then you get to the Euler equation, right. Navier-Stokes equation is

very popular and that is a special case of the momentum balance equation, ok. Then | showed you



the various different applications of this equation of motion very relevant, highly useful situations
we saw. This is what | have shown earlier.

(Refer Slide Time: 26:11)

Some applications of the equations of motion
= steady state folling film

B

Yeah, this | had already discussed for in film.
(Refer Slide Time: 26:19)
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Flow in a cylindrical pipe

~

I P

We had looked at flow in a cylindrical pipe got very useful relationships, this flow in a cylindrical

pipe you could apply it to a wide range of situations right from flows in the body to flows in the
industry and so on so forth.

(Refer Slide Time: 26:37)



The analysis has significance in a variety of situations

* flow in a micro-devices

* flow of body flulds in the human body, at least as a first approximation
*+ flow of liquids and gases in the bio-process industry

Let us conyider

laminar flow of a Newtonian fluid

down a cyfindrical pipe placed vertical i
Let us consider the situation when the flow is well-developed, Le. the axial velocity at any particular radial position
in the pipe i not dependent on the length, v, # [(2)

Let us derive the profiles of shear rates and velocities across the tube diameter

We used the equation of motion.
(Refer Slide Time: 26:39)

NPTEL

The system of interest s cylindrical
Therefore, it is best to use cylindrical coordinates here
Table 3.4, = 2 is relevant

Let us first consider Eq. A2 in Table 3.4, ~2

(% =0 (wy=0 (ry=0 (v 2/(2)
0m=0

0 0 0 0
Lok )
Pt t 700 7 %) wete) mefe)

i n=0 =0) =0 , 30)
0 0 (A 00) 0 (9

» =

0 0
% a(xo 103’& zﬂ %Z) 90) fq342.-1
: drﬂ‘Orrdr(%’r: & e TTE )|
%0 per £a.342.-2
ar

The pressure across the cross-section at a particular length in laminar flow through a pipe does not depend on the
radial position
This t5 an important insight

(Refer Slide Time: 26:43)




Let us next consider Eq, B2 in Table 34. -2

B0 €050 20
ply=si

’Z /‘ ‘ll‘ ‘7}!“'/0

v f(8) W% #f(0) e flz)

pesh, ‘%’éilw’e

- "(
- rdr

1dp
rdo

ap

= v ¢ [(#)
b ¥

The pressure does not vary with angular position in the pipe

r,_oj <;,|0\ (gm0 =0 (o=

fq 342 -3

0

NPTEL

To come up with the fact that the pressure across a cross section is the same.

(Refer Slide Time: 26:47)

Let us consider £q. C2 in Table 3.4.- 2

(w '0' (;,-01 (v, 1{(:):

0

PN

[ :{(6) (v, :{‘ )

Let us define P=p=pys
) ip - J
Thus o Py = % - p32) = (F
dr "° o0z oz

The pressure across 2 different cross sections could be different, pressure across a particular cross

+ o

£q.342.-5

£q 342.-6

section is the same, it does not vary with radius or with your angle.
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Since g, =g, We canwrite £q. 342 ~6as

ud(.dr, _op fa342.-7
ror\"ar )" @ o

We know from equations 3.42.-2and 34.2. -4thatp #f(r) and p = f(0)
Thus P = p ¢+ pgz # f(r) and # f10)

Since P = fiz) alone, the partial derivative on the RHS can be replaced by an ordinary derivative

Similarly v, and r are only f(r) and they are not (0) or f(2)
Thus the partial derivative on the LHS can also be replaced by ordinary derivative

With the above, the equation 3.4.2. = 7 can be written as

£q.342.-8

ud [ dv,\ dP
;21}(' 3;) "%

And then we got the velocity profile I think.
(Refer Slide Time: 27:02)

Now, note that the LHS i a function of r and RHS s a function of 2, |.¢

ud f(r) = df(z)

fq.342.-9
r dr dz

From mathematics, we know that this is possible only if each derivative equals a constant, say C,

Fiest, let us consider the RHS of g 342 <8

dp
~ul fq 342 -10
i

Therefore, P=Cr+C; fg.342-11

The relevant boundary conditions are

a1e0  P=p,

el P=Pp

(Refer Slide Time: 27:06)



Using the BCs we get

,/J/Il%
T D

G=Ph NPTEL
P =Py
G —
L
P =P,
Therefore, P [ll, ],+l"‘ fq.342.-12

Next, let consider the LHS and equate it to the same C

pd [ dy, ar
(, ] “ (= Note: AP =P, ~ P,
rdr\ dr) L
.
: d( ,n,) o
e e\ )T
dv, APr?
Integrating, we get r
dr L2y
(Refer Slide Time: 27:09)
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Atr =0, Cy, must be equal to 0 (Since v is finite, = 0, Therefore Cy, = 0). Thus, § o
L
dv, APr \
as fq.342.-13 -
dr 2l NPTEL
AP
Integrating, we get y, = +(, fq.342-14
4l
Now, using the BC that at r = R, 11, = 0 ('no-ship boundary condition’), we get
- o 2K Ths,
dul
A!’(_ R 71—M‘)h‘~'l (r] fa 34218
b Al A Al 2 v R x Siois
.
Thus the velocity profile s parabolic across the diameter
Note that P = P, - P,; typically, for the flow to occur, P, <P,
Thus (=AP) is positive "'

Thus

v, :Lii(,_z LR = (—iiikz {l_(;ﬂ (3.4.2-15)
That is the typical parabolic velocity profile in laminar flow in a pipe we got an expression for
that. So, this is the sorry parabolic velocity profile in laminar flow that | have shown. And then we
looked at the shear stress profile which turned out to be a linear shear stress profile, ok, is a highly
relevant.
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And then | think that is good enough for this. | think I we of course backed out the expression for
maximum velocity, flow rate, average velocity and so on. And also looked at the Poiseuille
equation which relates pressure drop and volumetric flow rate. We said that if you double the

diameter then the flow rate increases 16 fold and so, ok, those were the salient points there.

Then there were applications to capillary flow, cuvette flow which is flow between 2 cylinders in
this case, the example of cuvette flow. Then you were introduced to a dimensional analysis which
involves non dimensional numbers. There we saw that even without knowing much about the
system just by doing an analysis on the dimensions of the system using the Buckingham pi theorem
and a certain procedure that seems to work. We can get very good insights of the kind of

relationship between variables even if we know nothing about the system.

We have not done any experiments and so on and so forth. Then probably a few experiments can

be done to fix the constants and so on so forth, ok. Then we got into unsteady state flow where
once you bring in the unsteady state % term, then it just complicates the mathematics quite a bit,

ok. And again to emphasize this is not a course that tests your proficiency in mathematics, you

need to know how to solve something that is it, how complex it is and so on so forth.

We are not really bothered at this undergraduate level, ok they are of course important that can

probably be taken up with the graduate level. Therefore the idea here is to show you that there are



solutions that exist. We do not expect you to become experts in the kind of solutions, kind of
heavily involved mathematical solutions in this course, basal level, yes. That is based on your the

information that you picked up in the engineering mathematics courses.

After the solving differential equations, knowing some methods for solving partial differential
equations, some methods for solving ordinary differential equations and so on so forth. Any of the
other things are of course specialized and that was given to you as information, ok, the expertise
in that is not expected as a deliverable in this course at all. Then we spent a good amount of time
or before even that | should say an example of unsteady state flows pulse the time flow. We saw
how to handle that and then we also saw how to handle turbulent flow.

(Refer Slide Time: 30:37)
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Turbulent flow

Probably we should spend a little bit of time there in the review.
(Refer Slide Time: 30:46)



o
Y

§
)
Ry
When we discussed flow through a circular pipe, we saw that the flow turns chaotic or turbulent % t}
above a Reynolds number of 4000 \_J
NPTEL

Many flows in the blo-industry are turbulent, where they are preferred for better mixing, etc

Turbulent flow can occur near artificial valves of the heart ~ wasteful expenditure of pumping energy

Video
Who

lood viscosity: Links to Cardiovascular Disease

W tube. com/watch s WICKd xd

In this chapter, we will see how analysis of turbulent flow Is approached

We said that the physical principles should be applicable to the flow irrespective of the type of

flow ok, because those are physical realities.
(Refer Slide Time: 30:53)
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The velocity 1, at any point in turbulent flow can be expressed as:

V=t j
NPTEL

f, is an averuge component v, is a fluctuating component

We will better understand the above formulation, soon

Through careful experimental measurements, It has been shown that for turbulent flow in a pipe

TURBULENT LAMINAR
v,:..‘v‘,t 1 ,1] [‘ (;)l fq.38 -1

fq38-2

AP« 01 xQ :qss—’

i g !-& ..

Therefore the equation of motion, equation of continuity would certainly be applicable. And we

said if you can express your velocity as a sum of an average component and a fluctuating
component. The pressure as the sum of an average component and a fluctuating component, the
same equations that we had can be used. They reduce to simpler forms.

(Refer Slide Time: 31:19)



In open flow: hitps//www youtube com/watch?v=02H3yqaixVe

NPTEL

Inatube: hitps//wwwyoutube com/watch

Visualization of turbulent flow: Random motion of packets of fluid (eddies)

Turbulent flow in o tube

+ The flow is entirely random at the centre of the tube, Le. far away from the wall

+ Near the wall, the fluctuation in the velocity in the axial direction is greater than the fluctuations in the radial direction
¢ Atthe wall, the fluctuations are zero

And we could use the simpler forms if it becomes necessary to use them.
(Refer Slide Time: 31:23)

Let us consider the fluid behaviour at one point of turbulent flow in the tube (pipe)

As we are watching it, let us say that the mean velocity decreases say, due to a change in the pressure drop causing
the flow {decrease in pump speed)

The variation of the axial component of the velocity, v,, at the point of observation

1), Is called the time-smoothed velocity,
|.e. the average of v, over a time interval
large enough with respect to the time of
turbulent oscillation, but small enough
with respect to the time changes in the

pressure drop causing the flow
vl

1 [ttt

|",=—~I v, dt fq. 38 -4
[ll 1

.
1, = § + 1) (average + floctuation)
e .
—

Then we slowly weird of into an empirical way of approaching turbulent flow.
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The pressure at a point will also vary in a similar fashion

p=p+p £q.38.-6

Let us further consider the fluctuations

If we take the average of the fluctuations, ', by the definition of the average, the positive values will always
balance the negative values, For example,

w=0 fq.38.-7

Therefore, we cannot use 7, as & measure of turbulence =
However, the average of the squares of the fluctuation values, 1,"¢, will not be zero = it can be a measure of turbulence.

Intensity of turbulence = = g
Veawy .
Typical values: between 0.01 and 0.1
3 v_ At the centre of the tube the above v.
Near the wal, Axfal *—> Radial *— are comoarable (isotroic condition

Let me just get there.
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As long as the eddy size is greater than the mean free path of the molecules (continuum holds) the following
fundamental aspects need to be applicable for turbulent flow

* Equation of continuity (that is based on mass balance)

+ Equation of motion (that is based on momentum balance)

For turbulent flow (let us first consider incompressible turbulent flow for illustration), the above can be written as

Equation of continulty:
e L +w)+ 20,40 w0 £q.38.-9
J—l(llul)O"—v(Hn,) cJ_z("H')' q.38.~
Equation of motion (x-direction):

[
S0, )

L Rl e R N N /07 TR P i L L R 7 i | IR Dot
= = ) = | p(0 4 V)G 4 ) ‘,,—y/'(-‘, #5640+ (0, + )0 vy ) + PG, 4 v}) 4
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Let us take the time average of the velocity components, Le. @ = ~ | ™ v dt over ts that are large with respect Lo § *x
~ S
turbulent oscillations but small with respect to macro variations \‘3\ j
The time averaged fluctuations will go to rero NPTEL

The time-smoothed equation of continuity can be written as

v, dv, av, Z
=24 0 £q.38.-11
dx dy oz

The time-smoothed equation of mation:

a ) a d a a q a .
10, = 0,0y 4 == piy 0 + == pl, 0, Wy Wy i Ve g vy | 4 PO, 4 pg,
o’ ar " |ox! dyl gl P TPy e T pPle | T Pe.

fq.38-12

The third term in brackets on the RHS of Eq. 3.8. = 12 Is the only extra term when compared to the
equation of continuity for laminar flow

So, once you did the time smoothing, this becomes your equation of motion which is essentially
the same except that you are using essentially the same as laminar case except that you are using
the average components of the velocities here. The time smoothed equation of motion is almost
the same except for this additional term with Reynolds stresses, ok.

(Refer Slide Time: 32:02)

Recall that piif = momentum [lux or stress

o)
sy,
.. D

Therefore, let us say

NPTEL
t
f oy
T [
and so on

Are you able to recognize the above as the components of the turbulent momentum flux tensor {17
These stresses are also known as Reynolds stresses

In vector notation, the time- smoothed equation of continuity

=0 fq.38.~13

The time-smoothed equation of motion
.

[ I )
V%=-V:'-(Fi’|-]V:'"|+‘.(,’ fq 38 -14

Then.
(Refer Slide Time: 32:06)



>
Note, equations 3.8. - 9 to 14 are vahd for an incompressible flow 5 ¥
S
!
On the same lines, it can be shown that the equations/tables for laminar flow are valid for turbulent flow if we replace
NPTEL
W by
by |
y I f
.
— —
S
§
To get the velocity profile, we need a relationship between t and the velocity gradient 3 .
3
Y
For laminar flow, we had a theoretical base in terms of constitutive equations. S ,j
For turbulent flow we do not have that lusury. NPTEL

Based on a large number of experimental studies, relevant expressions have been proposed, Let us consider two
COmMOon expressions

On the same lines as for the laminar case,

. ’ di,
fyy ' ==y q.38.-15
dy

W™ = ‘eddy viscosity’; value could be 1005 of times the molecular viscosity

The second Is a popular formulation was by Prandtl

It was assumed that the eddies in the fiuid move around in a fashion simiar to that of the molecules in a gas
A ‘mixing length, |, which s a function of position represents an idea similar to the ‘mean free path’ in the
kinetic theory of gases

" dv, | de,
7,0 = <pp . fq.38.-16

dy| dy

v, by v.
p byp
_ o
and T by T+
Replacing by a laminar component and a turbulent component, the shear stress, a laminar
component and a turbulent component. Then you could use the same equations as earlier, the

velocity profiles we saw, we said that this is although in form it is the same as for a Newtonian

fluid in laminar flow and so on and so forth, sorry yeah.



You could use that for turbulent flow also with the recognition that this is

viscosity, right, that is what we said.
(Refer Slide Time: 32:50)
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Let us define

For0<s* <5

For0<s' €26 v =
o 1#niets*(1 = exp{-niv*s*))

3

For flow In pipes/tubes, the velocity profile in turbulent flow can be obtained through Delssier’s empirical formulation S
]
B

‘o — , t \p
W (‘\”)"

$=R=-r Leth
T, = wall shear stress at s = 0

n &5 the Deissler's constant for tube flow, near the wall = 0,124 (empirically found)

ol distance from the wall

not the molecular

Then we saw a Deissler’s empirical formulation, so far it was based on the fundamental equations

and now it is an empirical method. This is a useful method to get velocity profiles based on

experiments and therefore they are limited to the ranges over which they have been found to be

applicable. The other ranges we do not have any confidence in applying them, good. So, then we

got into the macroscopic aspects of fluid flow of momentum balance and so on and so forth.

(Refer Slide Time: 33:30)

Macroscopic aspects:

The engineering Bernoulli equation




We looked at the engineering Bernoulli equation although we did not derive it in detail because of
the reasons that | mentioned. We looked at the various applications of the engineering Bernoulli
equation. And we said that if you can define a friction factor for each situation, then the friction
factor approach can be taken to gain good insights also and definitely use it for design an operation,
alright.

(Refer Slide Time: 34:01)

Thus far, the understanding of fluid flow was in good depth

But, the mathematical effort was significant

If we can reduce the effort, but still get acceptable answers, it may be good for engineering design and operation
The ‘Engineering Bernoull equation’ is useful for this purpose : j
The Engineering Bernoulli equation can be derived by starting at the equation of motion, £q. 3.4, -4

Qutlines of the derivation are given in the textbook, and a more detalled derivation is avallable in Bird et al, (2002)

Interested students are encouraged to see the details

Here, we will merely state the Engineering Bernoulli equation and start using it to solve problems

dp AV 5
$ot A2+ FL4W, =0 £9.39.<5
p 2
' , 1
FL = frictional losses per unit mass W, = shaft work done per unit mass = — W,
s

We will also use the friction foctor approoch - there are different friction factors for different situations

: ; M
For design and operation, the friction factor approach would be the elsiest, with an acceptable balance

between rigour and the ease of usability

Ap Av2 —
i+‘7+gm+1~1+w,_ = (3.9-5)
P

where

FL=—[:%)av
m
o
W\' — _-Ws'
oom
Equation 3.9-5 is a useful form of the engineering Bernoulli equation.

(Refer Slide Time: 34:16)
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Friction factor for flow through a straight horizontal pipe

(Refer Slide Time: 34:16)

&
Let us consider a well-developed flow through a straight horizontal pipe s ¥
8
!
NPTEL

Note: we have made no
assumption about the

type of flow
1
.
Let us apply the Engineering Bernoulli’s equation between points 1 and 2
Ov=v,)
12
A O@z=z,) no shaft work
/ }a
8 i -
—--#ogen.f‘, +W=0
[ /4 / ¢ 1
‘/ /
n ap
f=-d fq 391.-1

p

i i

And the main idea the underline theme for this part of the course was, what are the friction factors

for various situations. In this case friction factor for flow through a straight horizontal pipe.
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Let us consider a differential fluid volume which Is disk shaped of radius R and thickness, 47

l'l
-
[ e————, o~
f (L X 1)
| (¥ |7 Py -
—_— . \Y
— 3 -
Disectian o fow u Wi

Note: t_is the wall shear stress both in laminar and turbulent flows
Even in turbulent flow, the flow closest to the wall is laminar

Let us do a force batance on the differential fluid element (shown in the figure)
pORY) = (p + 8p)(nR?) ~ 1, (20RA2) = 0

_p+ Op)(nR?) = pnR?

“

£q.391.-2

(82)2nR)
We got as.
(Refer Slide Time: 34:32)
ap\R
(8
Inthe limit 4z - 0 W= _(:P)':
;—:?*z;{ 0 £9.39.1.-3

We can Integrate Eq. 3.9.1. = 3 for a pipe of length L between points 1 and 2 to get

Pi=p 2
LAY )
L R
L atimR) R _-Gp) 0
or %= S TR
- " _4Lv_,
P="D
4r L
Substituting this into £g. 39.1. = 1, we get fl= 0
L

-
(Refer Slide Time: 34:35)

fq.391 -4




Let us define a dimensionless parameter called the friction factor (f) as

f = X £q.391.-5

A fluid exerts a force on a body of interest

That force can be thought to consist of two parts, Fand F,

F,: the force that ks exerted even when the fluid ks stationary

F, ' the force exerted when the fluid is in refative motion compared to the body of interest

A the appropriate area
KE' the kinetic energy per unit volume

& D
| 1 *3 (=ap)b

For flow through atube, [ =3 1 RETTT Eq.391.-6

lJ]A“'.y.,‘ 3 PVarg’ L

1
Therefore, 1 < PVarg’ [ fq.391 -7

(Refer Slide Time: 34:40)
Substituting £, 3.9.1. = 7in 3.9.1. = 4, we get 57‘
qH
1 A
450" )1 AV
A===3 ”(n}( ) ) L cpiil NPTEL

FL accounts for skin friction, |.e. frictional losses at the plpe wall

We can write equation 39.1. < 8 as

a-1(p)%)

Let us define a hydraulic radiuy’, 1, 2%

cross = sectional area

Y= fq.391.-9

wetted perimeter

L "’avg
D 2
4

and you could also write it in terms of the hydraulic diameter and thereby make it applicable to a

FL=f

non circular cross section. Then we said since this does not take into account the type of flow, this

is applicable for laminar flow as well as to turbulent flow. The details would of course be different
but they form a certainly applicable.
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b F 4 '
For the pipe 5) » § n\;

2N 4

Therefore fl= :‘ : )1 oy | £9.39.1.-10
U -

This equation, in practice, can be extended to all cross-sectional geometrics

To find the friction factor for pipe flow, a friction factor chart can be used

(Refer Slide Time: 35:07)

=
5
1.000 i 8 ‘°‘§
For the laminar reglons, we can use / | § S
i b =
\ For the turbulent regime, we need to use the chart NPTEI

0.100
For the intermediate regime (2100 < N, < 4000) we
usually avold design

0.001
16402 16403 16404 IES05 16406 NENO7

friction factor. f

Reynolds number, N,

In the turbulent regime, the friction factor, f is a function of the roughness factor, k/D

k: roughness length (effective thickness)

D: dameter of the pipe

Y

Then yeah, this is the friction factor chart, defining friction factor chart, friction factor versus the
Reynolds number. So, this is 16 /Nre, this is you have to read it from the chart for various values
of pipe roughness. Then we saw the application to different situations one was stenosis in the artery
to get to an very interesting condition of the cavitations effects when do they become important
and so on.

Then we saw application to relative motion between a solid and a liquid then to packed beds and
so on so forth, ok. So, large number of applications for the exact expressions, please go back to
your notes and take a look at them. | am trying to give you an overall picture, that is the reason



why | am not showing you the exact equations except when there is been if | felt a need for them,
ok.

So, this being a review, | am not going through each and every single aspect of it. Please go through
your notes and fill in the details whenever you need to, ok. Forgetting is very normal and that is a
reason why we have textbook, notes and so on so forth. So, right ok, I think we need to stop here,
we have been at it for quite a while, it is best to break it up, when we meet next, we will do the
next part of the review and probably one more and finish up with that, see you, bye.



