Transport Phenomena in Biological Systems
Prof. G. K. Suraishkumar
Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Building
Indian Institute of Technology-Madras

Lecture-78
Course Review-Part 1

Welcome, in the next few lectures, this lecture and then probably one or two more, we would
review the entire course, this is a heavy course and therefore we are going to take a time
reviewing it, you would be able to look at things and perspective, you would be able to revise
the concepts, cement some of those concepts that are still eluding you and so on and so forth.
So, that your overall preparation becomes that much better.

So it is nice to have all the review in one later on. If you want to refer to this course you can
start with the review. There you have everything in a form that is there you have already gone
through the effort in arriving at these various things. And based on your need, you can go to
the specific lectures which are much more detailed okay.

(Refer Slide Time: 01:07)
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Transport Phenomena
in Biological Systems

So, let us begin with the place where we began. | told you initially where this course fits in
because you need to understand that to appreciate the course, a little better.
(Refer Slide Time: 01:22)
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Engineering undergraduates in respective disciplines are given the knowledge and are
helped to understand the same toward analysis and design of the appropriate systems,
after graduation

For example, Mechanical Engineers are expected to analyze, design, and operate
Mechanical systems, Electrical engineers are expected to do the same for Electrical systems,
Chemical Engineers for Chemical systems, and so on.

Similarly, Biological Engineering graduates are expected to analyze, design, and operate
biological systems. For the above, they need to have an appropriate understanding based
the suitable knowledge provided to them.

So, we looked at engineering curricula in general and we said that engineers are expected to
analyze design and operate appropriate systems. Mechanical Engineers are expected to analyze
and design and operate mechanical systems. Electrical engineers are expected to do the same
for electrical systems, chemical engineers are chemical systems and so on and so forth.
Similarly, biological engineering graduates are expected to analyze design and operate

biological systems.

That is what engineering is all about. For the above they need to have an appropriate
understanding based on these suitable knowledge that is provided to them was what the bottom
line was.

(Refer Slide Time: 02:03)

L

= = . Higher studies

" Well-rounded graduate )

&F N
. capable of analysis and design | f 2K E
of bio-systems Industry S
I (start-up or established) NPTEL
Electives Humanities Project
| - Academia
Further vs.
Analysis and Design Lab courses
. Indust
Information |\ 4
— .,*,'V/ e ==
Thermodyna- [ Transport | Cell Data pillars of analysis
mics (classical Fluxes & Nechanics Sciences wars of analy:
& statistical) \ Forces l
\
{ thsics,f\ i rBiology (Microbiology, Biochemistry,

Molecular Biology, Cell Biology, Genetics, Immunology, .)




So, the curriculum is typically set up like this we have a base in mathematics, physics,
chemistry and biology. We provide the base predominantly for biology, even the initial
information that many students will not have. Mathematics, physics and chemistry they come

in with some preparation and then that level is raised through the first year engineering courses.

And first year maths, physics, chemistry courses in engineering, then you have pillars of
analysis, one of the important pillars is thermodynamics both the classical and statistical
aspects for biological systems. Transport, this course fluxes and forces, cell mechanics, the
courses that give you a course that looks at the mechanical aspects of cells and data sciences,

the way of looking at large data sets to make appropriate sense.

All these are pillars of analysis of the basic information that is provided. So, there are courses
for all these aspects and on top of this we have courses. So, further analysis as well as
information, specific information, design, lab courses, which helps students develop a lot of
necessary skills. Then you have electives which could be short term electives are topical or
could be topical.

There is a certain interest in a certain topic at a certain time in the world. So, there is a course
that is given on that mostly information and some analysis and so on. They could also be
courses that built on these, which are electives. Electives this means the person has a choice to
do them, which are not the essential aspects of the curriculum, but build on to the curriculum,

add on to the value of the person.

Then, of course, you need humanities courses for a well rounded development of the graduate,
you typically have a project to all these together, go towards making a well rounded graduate,
capable of analysis and design of biosystems. Then the graduate either goes, | mean goes out
into the real world and either into the industry, either a start up or an established industry, or
goes for higher studies that will lead to academia or a industry.

This is the place for this course. And therefore, the importance, it is one of the pillars of
analysis, important foundation for the entire curriculum and therefore it is important. We have
already seen this.

(Refer Slide Time: 04:50)



Fluxes under simultaneous,
multiple driving forces

And then this is a textbook and so on, so forth. I think that is good enough for the introductory
aspect of this course.
(Refer Slide Time: 05:04)
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Flux of quantity Primary driving force A constitutive equation s
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Mass concentration gradient Fick's | law

velocity gradient Newton's law

Thermal Energy temperature gradient Fourier's law

Now, let me switch to this aspect which in a nutshell puts the various perspectives together,
okay. If you look at, we had essentially looked at the fluxes of conserved quantities which has
mass, momentum, energy and charge okay. These are the 4 conserved quantities that we looked
atin this course. If you look at the flux of that particular conserved quantity, the primary driving

force for that quantity in this column.

And a constitutive equation, which is obeyed by a wide variety of substances may not be all
but a wide variety of substances here, then, if you look at mass which is conserved, the

concentration gradient is the primary driving force and Fick’s first law gives you an example



of a constitutive equation. The molar flux is directly proportional to the negative of the

concentration gradient and the constant of proportionality is a diffuser.

Then if you look at momentum flux, momentum is also conserved. Velocity gradient is the

primary driving force and Newton's law of viscosity, which is tyx, the shear stress Tyx equals -

”%‘ The momentum flux is proportional to the velocity gradient, the negative of the velocity

gradient and the constant of proportionality is your viscosity. Then we looked at thermal energy

which is not conserved.

We looked at energy conservation as a whole then we kind of picked out or backed out thermal
energy from this because thermal energy is of importance to us in design an operation.
Temperature gradient is the primary driving force in this case and Fourier’s law qx, heat flux is
directly proportional to the negative of the temperature gradient with the constant of

proportionality being the heat conductivity.

You see all these forms being the same, all these ideas being the same and so on. One more
charge which is of course a conserved quantity, the primary driving force is the electrical
potential gradient and the Ohm’s law, which is sorry the electrical charge flux being
proportional to the negative of the electrical potential gradient and the constant of

proportionality being the electrical conductivity ke.

The potential gradient divided by 1 by ke which is the resistance is your current and so on so
forth. This is of course is flux, this is written in terms of fluxes to be consistent with our other
representations and in this course. This gives you in a nutshell, what are we looked at in a
majority of the course, where we looked only at the primary driving force causing the
appropriate books. And then the last chapter was something else. Now let me go back to details.
In this lecture, I look at the details of mass conservation.

(Refer Slide Time: 08:09)



Conserved Quantities

For o conserved quantity, we can confidently say/write LHS = RHS, say in o process

And mass flux is mass conservation is an important principle.
(Refer Slide Time: 08:13)

We all know
“Mass can neither be created nor destroyed” from high school physics

Mass is conserved

- if we are not dealing with nuclear reactions (mass to energy conversion)
- if we are not travelling at close to light speeds (mass dilation)

Let us first review some useful applications of the mass conservation principle
and also extend it
Before that, let us review the more fundamental, “rate concept”

We saw the need for rates. That is where we began actually at the very, very beginning. When
because engineering quantities look at rates, okay. And so we needed to write or we needed to
express the mass conservation principle, mass can neither be created nor destroyed in terms of
rates relevant to a process and that is the way it was going to become useful. Also, | need to
mention that of course, mass is conserved as long as we are not dealing with nuclear reactions,

where mass to energy conversion can take place.

Or we are not travelling at speeds close to that applied in these conditions. When you travel at

speeds close to that of light, you get mass dilation. So we are not looking at that affects in the



mass conservation. So, as long as you do not get into these masses conserved for all terrestrial
aspects except for nuclear reactions and then they should be fine.
(Refer Slide Time: 09:14)
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Let us say that we are filling a water tank of Y
volume, V = 12,000 L Pt

mass, m="? pause 12,000 Kg

So, we had reviewed the mass conservation principle.
(Refer Slide Time: 09:17)

o Y
""nmu" '

r,, Inputrate (Kgs') t, time(s) s

10 1200 (20 min)
20 600 (10 min)
50 240 (4 min)

If we know the rate of water input, r;,, t = m/r;,

(Refer Slide Time: 09:18)



Suppose, there is a hole in the tanker, which oozes
water at a rate of 5 Kg s*!, how long would it take to fill
the tank?

pause

Mmet = Tin = Tout = 20-5=15Kg s

t=m/r, = 12000/15 = 800 s (or, 13.3 min)

We looked at the need for it and so on.
(Refer Slide Time: 09:20)

Now, suppose, that in addition to the leak, there is some mechanism inside the tank
itself that is generating water at say 1 Kg s and some other reaction in which water is
used up inside the tank, at 0.25 Kg s, all of which simultaneously occur, how long
would it take to fill the tank?

pause
Tt = Tin = Tout + Tgen = Toonsump: = 20 =5+ 1-0.25 =15.75Kg s

This is the rate at which water gets accumulated inside the tank, the rate of
change of water mass with time in the tank (system)

t=m/r, = 12000/15.75 = 761.9 s (or, 12.7 min)

Rate is a fundamental (in terms of usefulness) parameter.
You need to start thinking in terms of rates rather than amoun

------------- livianm wmsoms diad tia walamal
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Mass balance: important principle u
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Based on the law of conservation of mass

Total mass is a constant
(as long as we don’t deal with nuclear reactions, or
travel at speeds close to that of light)

If we follow the mass of a species, only the following
can happen to the species:

- Species is input into the system (rate:r)
- Species is output from the system (rate: r,)
- Species is generated in the system (rate: ',z)

(Refer Slide Time: 09:24)
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net rate = rate at which the species mass gets

dm
accumulated in the system,-—l—t—
¢

d (m)
L] —ra+ rg =Tc= T

This is a useful form of the material balance principle,
that can be directly applied to processes

And then we got a useful form of the mass conservation equation, input rate in a mass rate
minus the output rate plus the generation rate minus the consumption rate equals the
accumulation rate okay. This in fact can generally be used for any conserved quantity, here we
had use it for mass, then we use it for momentum, then we use it for charge and then we use it

for energy and then for charge, okay.

So, this is general common sense there is nothing else than that can happen to any species.
There can be when you focus on a system and you focus on a species in the system you do a
balances over the system, there can be only an input rate and output rate a generation rate and
a consumption rate and the algebraic sum of those leads to the accumulation rate. It is written

in this form to be directly in a useful form for the various analyses.
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Application to macroscopic systems

A humidifier is fed with dry air (with no water vapour; it is removed during the processing of air 1o avoid

contamination of the bioreactor) and clean liquid water. Why us nidifier?

The Hiquid water flow 8 cemin?, If 5 mole% o

ygen are needed In the output stream of the humidifier

for supply to the bioreact

s determine the molar rate at which air should be supplied to the humidifier

when it operates at steady-state.

humidifier f—>

' M.
| xo,p = 005

(Refer Slide Time: 10:24)
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Problem solving

So, we had looked at the application to macro system which is a review.
(Refer Slide Time: 10:29)



Problem solving is a

higher level skill STRATEGIES
(REATE
PROBLEM

SOLVING
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Closed-ended problem solving

r l""lmll’l

0. Get a feel of the situation by reading it a few times

1. What is needed?

2. What is given/known?

3, How do we connect the needs with the givens/knowns?

Any principles that we can rely on?

Then we looked at some principles of problem solving okay. Essentially | get a feel for the
situation by reading it a few times. This is for close ended problem solving that is and then ask
the question what is needed, what is given or known you could do that in any order, and then,
how to connect the needs with the givens or knowns. This in general is the algorithm for getting
or solving problems which are closed ended.

(Refer Slide Time: 10:59)



AN
A humidifier is fed with dry air (with no water vapour; it is removed during the processing of air to avoid -
X s
contamination of the bioreactor) and clean hiquid water. Why use a humidifier? -‘4’,
TEL
The liquid water flow rate is 18 cc min. If 5 mole% of oxygen are needed in the output stream of the humidifier Eu

for supply to the bioreactor, let us determine the molar rate at which air should be supplied to the humidifier,

when it operates at steady-state

humidifier “_’

(Refer Slide Time: 11:00)

0. Get a feel of the situation by reading it a few times

1. What is needed? Molar rate of air at the outlet of the humditier
2. What is given/known? Flow rates and compositions of some streams
3. How do we connect the needs with the givens/knowns?

Any principles that we can rely on? Material balance

it is recommended to do the above, explicitly while solving closed-ended problems
We would do it mostlv imolicitlv

So, this was the application to a macroscopic system, which was a review.
(Refer Slide Time: 11:08)



Dry alr Is made of 21% oxygen and 79% nitrogen by volume or mole (the minor components of air are ignored for
this problem).
Thus, the molar flow rates of oxygen and nitrogen in the air stream can be written as

Mo, air = 0.21 Ma, £g.13.-1

And then we applied it to a microscopic system. Maybe not spend too much here, the
microscopic system, | think is here or here. Yeah, it is here.
(Refer Slide Time: 11:25)
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Application to microscopic systems: A biological cell

We know from our basic biology courses that thousands of reactions occur in simultaneously
occurring reaction networks in a cell

They are essential for normal cell function

The bio-products are also made as a results of such reaction networks

Metabolic Flux Analysis (MFA) is a method of analysis of reaction networks
It has been successfully used to modify cells toward significantly improved product yields

So, this is application to a microscopic system or a biological cell, where we looked at the
reaction network in the cell and looked at the essence of metabolic flux analysis.
(Refer Slide Time: 11:44)



Let us consider a few reactions that
occur in the cell

The rates of the individual steps, ry, ry,
ry 'y, and r, (mmole per second), or
mmole (g cell! 51

Historically, the above rates are called
metabaolic “fluxes’. This ‘flux’ is
different from the normal meaning of
the term in this course

For the intracellular metabolites (5, A, B), we will consider the intracellular space of the
cell as sur system

We considered a framework. We wrote the balances for each of these components in the
framework. Okay, in the reaction framework. The trick that we used was that for the
intracellular metabolites, we would use the inside of the cell as system for extra cell metabolites
were used the outside of the cell as a system, the thing that we focus on.

(Refer Slide Time: 12:08)
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Then when we wrote the balances.
(Refer Slide Time: 12:13)



These bal. quations can be written in a compact form, as follow i % \§
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1.0 0 0 0 So

1 -1 -1 0 off s

0 1 0 -10]|,. [_4] 4 s <o

0 0 1 0-1f| 2 dac | B %

0 0 0 1 0 2 ¢

0 0 0 0 1 ' D

S.7= —% £q.1.2.-10
dt

S‘ = stoichiometric matrix

Eq. 1.2. - 10 is used to quantify T = reaction rate vector
metabolic fluxes for further MFA.

¥ = state veetor (vector of state variahles)

We could write it of the form that can be transferred to a compact matrix form, the
stochiometric matrix, the rate vector and the vector of state variables the derivative of that is
what the balance comes down to and this is very useful in different situations. You need of

course, much more specifics to be able to make appropriate use of this formulation, okay. So,

Sr= Z—:, S matrix, r matrix or r vector and the derivative of this state variable vector.

So, stochiometric matrix, reaction rate vector and these state vector, vector of state variables.
So, this is what we had seen. And then we started looking at fluxes, we defined what a flux
was.

(Refer Slide Time: 13:07)

Material balances (useful form) in fluid systems

Before that we looked at mass conservation. So, | need to mention this.
(Refer Slide Time: 13:11)



We considered a fluid flow situation.
(Refer Slide Time: 13:18)
Review of needed derivatives

Let us ensure that we are comfortable with the need for a mathematical approach
and the needed derivatives.
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A mathematical approach makes aspects more generally applicable
and thus, significantly increases our confidence is its use

To review the derivatives, let us consider studying the effect of ocean currents on
fish concentration in the ocean, with a sonar device for fish counts and a motor boat

The fish concentration, c = f{x, y, z, t) i.e. function of (can vary with) space and time

If we drop the effective anchors of the motor boat, and count the fish, the count will provide
the variation of ¢ w.r.t. time alone, because we are doing it at a fixed location, i.e. fixed x,y,2

de i.e. partial derivative of c with respect to t, at constant x, y, z
E Usually x, y,  are not explicitly shown as constants in the partial derivative, except when required
x.y.z avoid confusion

And then we said that we needed, we looked at derivatives that we needed and the review
mode, partially derivative.
(Refer Slide Time: 13:29)



Next, let us raise the anchor, start the engine and move about in the ocean, and count fish 7 V)

with out device.
The time rate of change of c will give (easy to see by applying the chain rule to ¢ = f{t,x,y,2)

dc dc | dcdx  dcdy  dcdz

dat arxat dyoc ozt

¢ fit,x, v, z)butx  fl1),y - fit).z - f1). i.c. only functions of t
Thus we can replace those partial derivatives with t by total derivatives

dc dc  dcdx  dcdy [ dcdz

I at  ax dt dy dt dz dt

Lz 5
are components of the boat velocity

, = are components of the concentration changes with respect to the boat's position at a certain tim

A total derivative and then we also looked at the substantial derivative which you may be
familiar with or you may have picked up as a part of this course, okay.

(Refer Slide Time: 13:41)

Such a derivative is called ‘time derivative following the motion’ or “substantial derivative”

Let us say, we shut off the engines, but do not drop anchor & -,,\
We would move about with the velocity of the current, i (local velocity) 7R
The change in fish concentration with time will depend on the local velocity, i 3, 4?5

De de ac e
Do ok 08 | 0 o) S0
bt o Xox Wy Vg

vy, ¥y, I, are the components of the local velocity ©#

More compactly, in vector notation:

De 7
- +(.Vc) sl
Dt <0¢ V=10 +] vyt kvg
R L s )
V=t5 U k5

¢ the unit vectors in the x, y and 2 direction

So, these are the 3 derivatives that would be used in this course, very useful derivatives and the
compact notation that we can use, this is the equation of continuity for a single component
system or the total mass taken in terms of substantial derivative here. That is what we had come

to.
(Refer Slide Time: 14:06)
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Useful form of material balance in a flow (fluid) system
Useful form: in terms of measurable/relevant variables

(
-3

Equation of continuity

Let us first consider a single component (or total mass)

Before we got into the flux, you still follow the middle. Yeah, | had already given you a flavour

of how things would be, we derive equations with a reasonably gentle have those tables, just

refer to the tables, choose the appropriate equation, cancel out the relevant terms and go

forward okay.
(Refer Slide Time: 14:06)

Let us choose a right handed Cartesian co-ordinate system ',v;-“ ~

Let us choose a fixed volume element in space through which the fluid flows 3 E

Volume of the element, AV = Ax Ay Az N S
“alV

Z (xedx, y* By, 2+ A2)
.

d(m)

So, | have shown you the equation of continuity, derive the equation of continuity, take in the

rectangular Cartesian coordinate system.
(Refer Slide Time: 14:33)



Let us express the balance in terms of measurable/relevant variables.

This is a 3-D flow. We need to consider the contributions from all directions. Let us do them one by one.

Recall p (kg m? ) x v (m ') = mass flux pr (kg m?5), And, rate = (flux) x (area)
Rate of mass In through the face at x =(pv)l, dy B2
Rate of mass out through the face at x + Ax =(pvg)lys ar By 2
Rate of mass in through the face aty = (pvy, )!. Ax bz
Rate of mass out through the face at y + Ay =(pw, ',E’ N Dy bz
Rate of mass in through the face at z = (pvy)l; Ax Ay
Rate of mass in through the face at z + Az = (pve)lz4az Ox By

dp{axdy bz

Rate of mass accumulation within the volume element =

- =Axdy Az
at ar

Substituting the above in 143=2 (e

And extended that Cartesian.
(Refer Slide Time: 14:36)

d,
Bxdydage= bydz{(pv)le = (Puolesart + Axazi(pny)| ~ (pv,)|

W) .
y+ay Eq.143~-3
+0x By {(pv2)lz = (Pv)l 2482 }

Dwide throughout by Axdydz  pause

ap 1, B = 1 1 S L
E gr(l”&)‘,.\ _(F’V.x)l\o ax i * ; :("v\'JL, _(‘”'\')L,,A‘, )z \7/ '“”‘IHI _('“7”70.27 H
When we impose the limit of an infinitesimal volume i.e. Ax-0, Ay-0, and 420 pause
ap a a a )
2. (£ pop, = o + = pv £q.1.43.-4
at (m PYy + ay PYy 2z PV
Vectorially, i
(L —(V. pv) fq.1.43.-5  Equation of continuit

at

The equation of continuity to other coordinate systems.
(Refer Slide Time: 14:41)
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Let us re-consider Eq. 1.4.3.~4

Let us expand the RHS using chain rule

ap vy ap vy dp v, ap
—=—[p==+ v — +p=24+v,— +p——+ V-
at Pax T gy YR t g TP %)
Let us re-arrange the above as

ap p ap _ dp (.1:,, v, m',) £q.143.-6
% Vxe  VyayTVzys i dy dz

Using our definition of substantial derivative, we can write in vector notation

Do _ -p (7.9) Eq

Dt

Fauation of rontin

(Refer Slide Time: 14:46)

f the density is a constant (e.g. incompressible fluid, say liquid), it does not change w.r.t. time.
Thus, the time derivatives of density can be set to 0.

The equation of continuity becomes EITEL

(F.5)=0

(Refer Slide Time: 14:49)



Reflection/Practice point

A design of a bioprocess device that is expected to handle a liquid presents the

following flow description. Check whether the device is feasible

v=k(x'+p) v.=k (' +2Y) v, =k (' +X)

(Refer Slide Time: 14:50)

Solution

The equation of continuit

Thus, it needs to be satisfied for any process to realistically exist

Also, this s a liquid, which can be taken 10 be incom us, for the given flow field, check whether

a d a
Or, whether (7 vt —1v+—uv =0 pause
dx dy dz *

Substituting the given flow field, the LHS gives 2K, X + 2k, ¥ + 2k32
= 2(kyx + kv + zk3)
exceptatky X + Kk, ¥ + K3z = 0 thisis not zero

Since the valdity is limited to a single plane, it does not seem to be suitable for design

Okay.
(Refer Slide Time: 14:55)



In different coordinate systems

$2.
r "“luml"

Rectangular coordinates:

dp Apuy) , Apvy)  dpuy)
£ 4 (#} A LT #):0 (A)

at ox ay dz

Cylindrical coordinates:

ap 1 d(pruvy) 1 d(prg) A(pvy)
—+(-—'+- 8 4 ):0 (B)
at r ar r a8 dz

Spherical coordinates:

ap (L""’ r?vy) g 1 d(pvgsing) 1 A»'“[Il"',,y) =0 (©)

at ar rsing 28 rsinf 40

So, yeah, different coordinate systems. You have the rectangular coordinates here, which we
derive. Then using the transformations in the appendix, it could go from the rectangle to the
cylindrical coordinates from rectangle to the spherical coordinates. So, | would ask you to make

a copy of this and keep it as a part of your notes to be used when there is a need okay. Then we
started our mass flux.
(Refer Slide Time: 15:25)
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Mass Flux

So, flux of any quantity.
(Refer Slide Time: 15:28)
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As mentioned earfler,

Fl . Quantity moved 1
“lux of a quantity = -
xiof g qu Y time Area perpendicular to the

direction of movemnent

=3
"

[
g !

Vass ik = Mass moved\ /[ 1 \
Mass ] time (zlreu perpemli(‘ulm'(uthe)

direction of movemnent

In fluid systems,

" a kg m e le 0
Density x velocity = = ot kg m?s? is mass flux
nd " s

We have already seen was quantity mode per time, that was it is moving in this direction, per
unit area that is perpendicular to the direction of motion. So, this was flux in this course, there
were a few exceptions where the term flux was used differently, metabolic flux analysis was
one such situation and the electric flux and magnetic flux from historical use of the term was a
little different.

Apart from that, for this course, the flux meant this, quantity moved per time per unit area
perpendicular to the direction of movement. Then, we said that the density times velocity is
flux. We saw the various applications of this formulation, the basic formulation.

(Refer Slide Time: 16:21)

Wide relevance
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Flux of substrates and products in bioreactors

Flux of desirable substances in membrane filtration

Glucose flux across the cell

Product flux (e.g. ethanol) out, across the cell

The transport of protein from the site of assembly to the site of function in the cell
The mass flux of oxygen from the blood to the organ where the cells of the organ use it

| — B4

The definitions of average.
(Refer Slide Time: 16:23)



Let us consider this experiment

Thermal motion

(Refer Slide Time: 16:25)

What causes the flux?

A driving force

What is the driving force for mass flux?
A difference in concentration over a distance - concentration gradient

Strictly speaking, it is the chemical potential gradient, but for mass flux within
the same phase, concentration gradient is sufficient

The concentration difference is ‘primarily’ or firstly linked to the mass flux

Many driving forces can cause much higher mass flux (e.g. stirring the beaker with ink)
We will see this in the last chapter = multiple driving forces causing the same flux

This is diffusion of course.
(Refer Slide Time: 16:29)



Average velocities &7
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Let us consider a multi-component mixture with many species (components)

"««

Let i7; be the velocity of I species with respect to staticnary co-ordinates axes NPTEL

The mass average velocity for a multi-species mixture with n species can be written as:

€q.211.~1

same species i in a tiny volume element, take the sum of individual velocities
e by the number of such molecules in that tiny volume element

Similarly, a molar average velecity 'is defined as:

n .
n (2.1.1-1)
i=tPi

where p, is the density of the i species.

PRy
c: V.
‘.—;x: =1 '
>

C:
i=1!

where ¢, is the concentration of species, i.
In a flowing system, the velocity of a species with respect to all species

(2.1.1-2)

y or y* is of more interest than the velocity with respect to stationary
coordinates.

Thus, the useful quantities in such a system would be
v, —v = Diffusive velocity of i with respect to y (2.1.1-3)
and

v, —v* = Diffusion velocity of i with respect to v* (2.1.1-4)

This equation do not worry about the equation numbers. So, these 2 basic definitions we gave
and expressed various quantities in terms of the mass average velocity, molar average velocity
and so on and so forth.

(Refer Slide Time: 17:26)



The velocity of a species with respect to ¥ or #F" is of more interest than the velocity
with respect to stationary co-ordinates

Diffusive velocity of i with respectto ¥ = (1, — ) Eg.2.1.1.-3

Diffusion velocity of | with respect to ¢#" = (¢, — ©#") Eq.2.1.1.-4

(Refer Slide Time: 17:28)

Let us consider the disinfection of a laboratory using formaldehyde vapours. Typically, formalin

jons (~40% wiv of formaldehyde in water) is used to generate formaldehyde vapours

isms in an enclosed space. Care is 0 doors with duct tape to pre
de vapours when the di 118 carried out. The vapours are generated by

se in lemperature due 1o the exothes ction between the added potassi

2 (KMnO,)

and formalin

ume that we are generating forma
(MW=30) and B = air (MW=29). Let us con

hyde vapours in a long cylinder. A = formaldehyde
r the plane where x, = 1/5. Let us say that at that plane

= 7 units . =V = 8 units

We went through a few exercises of those.
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v ? e (484 + Cailg) = X4y + X5 g Solution .i-"";“»
P §. %

A+ Cy

x is the mole fraction

""lnml"

From the problem statement we know that at the plane x, =
v 7 units (upward direction is taken as positive)
iy — #° =8 units

From the above velocities, we can get
Uy =841 15 units

Using B = XyPy + xyfly we conget pause

- 2 units (opposite direction)

Okay we applied it to a situation that normally happens in the lab and that has been our
approach you know integrate the problem solving, looking at things from the point of view of
problems and so on and so forth. As a part of the basic learning itself.

(Refer Slide Time: 17:49)

We know that M, = 30 (HCHO) and M,, = 29 (air S
e know ( ) 20
2 |
3 =
i s E o
= ———— (Vs + pp¥p) £q. 2.1.1.-5
PA, PB)
mu
Also, t fraction of A is defined as Wy = e q. 2.1.1,- €

(my +mg)

If we divide the RHS by V, both in the numerator and in the denominator, we get

Then, we said there are 2 basic approaches to solve the relevant problems, okay, typically, we
look for concentration profiles, when we solve mass balance, when we apply mass balance to
these situations, because concentration profiles give us a lot of useful information. So, to do
that, there are 2 major approaches.

(Refer Slide Time: 18:16)
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b

Mass Flux -
Shell Balances Approach

One is the shell balances approach.
(Refer Slide Time: 18:17)

i
= Uaggger’’

3

Generally speaking, there are two approaches to solve the relevant problems

(i) the shell balance approach and
(ii) the application of the relevant conservation equation

e.g. the equation of continuity in this case of mass conservation

And the other one is the application of the relevant conservation equation approach. We said
that the shell balance approach gives us good physical field for the situation. However, in
geometries that are different from the rectangular Cartesian coordinate systems, they could get
cumbersome and therefore, we looked at a relevant conservation equation that was reasonably

gentle, which could be derived which could be set aside in a table.

And that can be referred to directly, you take that equation cancel out the terms it becomes a
risk to be kind of a thing that you could do, much easier to work with. So, that is the relevant
conservation equation approach. In the case of cell balances, we did balances over a

representative shell in the fluid.
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Shell balances

3 Y
r l"'lmnl" :

For re
For cylindrical systems: o
For spherical coordinates: the shell could be an annular sphere.

ngular Ca e systems: th

uld be an anr

3 uniform membrane

consider a shell of thickness Ax, through
which diffusion occurs normal to the surface area A

Balances over of conserved quantities are made over a representative shell in the system. The
shell depends on the geometry under concentration and so on and so forth. So, here we had
looked at a uniform membrane, diffusion through a uniform membrane, and the shell was a
part of the membrane therefore, it was a thin cuboid in a membrane itself with a differential
cuboid in a membrane of thickness Ax.

(Refer Slide Time: 19:42)

d(m) . N B o 4
r'.ﬂas.s(urnevvalwon:T n—nt (I_,) - 7,) g

Waranst”

A material balance written over the shell {system) on component | entering at x and leaving at x + Ax

in terms of molar fluxes

dc,(MW,) G
AL = N (MWDA = N a (MW)A + Ry (MW)A ax £9.23.1.-1
d
Let us divide throughout by (MW,)A, a constant in this case pause
Oc _Nilx = Nibxsax R,
at Ax
In the limit Ax = 0, from the definition of the derivative pause
Ieq IN{ g B
=S ZDUy R, Eq.23.1.-2

at dx

Over which we wrote our mass conservation balance. Then we wrote the balance in terms of
the quantities that we have a handle on in terms of fluxes, molecular mass and so on. Even
fluxes become a little difficult. Therefore, we wanted fluxes in terms of concentration and so
on.
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3. 4
Here, the flux N, is only diffusive Y
S
o o s
Ni= [i = =Di5- -
PTEL
Thus
e %
—=D;— +R £g.23.1-3
at [ tgxy? f !
If there is no net production of | in the volume, AAx, by a reaction
ac %
—_— = Dt £q.231-4
ot Di ax? 3
Fick’s second law
Under steady-state conditions pause
d%¢
0=D;— £q.23.1-5
1 oy G
In30D d¢ 9
—=0=D; 7%

So, we derived the mass balance equation in detail. And for this situation, we could look at the

concentration profile as well as the Fick’s second law,

Under steady state conditions (no time dependence i.e. concentration
does not vary with time), the LHS of Eq. 2.3.1-4 becomes zero. Thus

i (2.3.1-5)

Equation 2.3.1-5 is the one-dimensional diffusion equation under steady
state conditions with no reaction.

In three dimensions, under the same conditions, Fick’s second law can
be written as

d;

=0=D, V, (2.3.1-6)
1

This is the governing equation which is called Fick’s second down. Then, under steady state
conditions, we saw the concentration profile of the species in the membrane in the system of
interest.
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Mass Flux -
Conservation (continuity) Equation Approach

Then after deriving this equation, this is shell balances then we derive the equation let me show
just the outlines of the derivation.

(Refer Slide Time: 21:00)

4

3K
- Uiggyper?’

!

d (m)
Mass conservation: —— =1, — 1, + 1; — 1,
dt

We are considered the rectangular Cartesian coordinate system. And same system as earlier in
this case, we are considered a species. When we consider the species there could be an input,

there could be an output, there could be generation of the species due to reaction, or there could
be a consumption of the species due to reaction.
(Refer Slide Time: 21:22)
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For o species, i, in the multi-component mixture, F N
)A; _ O, L i) E
20 P AvAy A; s
at ot Axly bz el

Note that flux, n,is a vector. Thus, ] = Mgy + T Myt KMy
Tiil, = (i)l By B2 Tioley e = (Mix)lxsnx By b2
pause

T I| - (r:,j.‘)[‘Ax Az r,,,|v_ A (n,_“)|\_' iy Bx bz
T, = ()l dx by Tiol,, np = (Miz)lz4az Bx By

Pause... 2

What is T, = T = say, net production rate’ {R; (MW,)} AxAy Az

loft nuor? N it i s ARSI B st

And then we derived a general enough relationship by considering all those.
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Substituting in the mass conservation equation, dividing throughout by the volume element AxAydz, and = P Q
taking the limit as Ax = 0, &y = 0, Az = 0, we get .3 §
) 2 s
5 ;
dpi ., Ny . ONiy  Ang, -
Y+ [

+(

at dx ay

)= R; (MW) fq.232.-1

In vector notation

dp;

- +(7 - i) = R(MW,) £2.232.-2
[

f we divide throughout by MW,

de;

at

£q.2.3.2.-3

+(V . A\;[) R;

Okay. In detail, whenever there is a need, you can go through the details to find out.
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Now, let us begin with 5
F N

Wi L (7 - ) = R(MW, 32.-2 )
2 S )= £q.23.2 3 5
0+ i) = R(MW,) &

We have already seen (£q. 22,1 ~6)that  — pD; Pw; = i — wy (i)

Substituting fi; from Eq. 2.2.1. - 6 in Eq. 2.3.2. - 2, we get pause
p; ; - : ?
= (7« [wi (fir) = pD; Pw(]) = Ri(MW)) £q.23.2.-4

By definition, iy = PV

Thus w; (fiy) = wi(pv) = p; v

Therefore, Eq. 2.3.2. - 4 can be written as
ap;

= +(7 « [pi % = pD; Vw;]) = Ry(MW)) £0.232.-5

(Refer Slide Time: 21:38)

ap;

Reordering, T + (fi + (p; ﬁ)) -V < (pDy l”\z’,) = Ry(MW;) £q.232.-6 ‘u\é
s
dp . . s s - —
o H(7 - D)= 7 - (07p) = R(Mw)) £a.232.-7 ‘
I; ; . . '
%il +p(F-5)+(5-Tp)— 7 - (D Vp;) = Ri(MW)) fa.232.-8

f pand D, are constants, (V- #) = 0 (Eq.of continuity)

ap;

. (% Vpy) = Dy P2p; = Ry(MW,) £9.232.-9
[
Dividing throughout by MW,
de . = 3 :
— + (¥ Vc) =Dy V2c = R £q.23.2.-10

Thie anvimtinn san ha 1ead b not rancantenbinn nrafiles — uani

So, this form we said would be useful to us therefore, we express these in individual
dimensions. And those became a part of a table in the 3 coordinate systems.
(Refer Slide Time: 22:00)



Table23.2.-1
The equation of continuity for a species, say i, in a multi-component mixture

. Y
s’

,_’
- |
T Yy

Rectangular coordinates:

é NG Ny NG
My (Bly Sy Be) =, (A1)

When cand D, are constant,

ac, a%c a%c

L3 9%i 4 o, 96 o o, 96 _ O | o %) _
a b (U-‘ ax +y ay seh v!)) Dy (.u-' + ay? 7) = Ri (A2)

So, these were the tables that | showed you and asked you to make a copy of and keep at readily
accessible place whenever you are looking at this material. And then | showed you the
application of these equations to various situations. The first one was the problem that we
solved by shell balances.
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I

e
Y
lml"

-y,

Cylindrical coordinates:

{
A

e 19, 19N | NG\ _
Xt (G rNy) +22500 4 2E) = g, (81)

When ¢ and D, are constant,

ac dc 1dc ac 19 acj 1 d% %
—’+(\*r—“\r.,——'-v\',,—‘)—~[), (—— (r_—)«r— - 4 ,‘)
a Gl ron e rar dar/ ¢ 982 dzt

1]
=
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Spherical coordinates:

3K
= Uagyger?’

2 ¢t
~

ey B o i iy
ot T (,1# /)’. (r*Nie) + (Nigsing) + ) =R, (c1)

rsinfl 46 rsing a0

When ¢ and D, are constant,

i +(v oy 100 1 d.,)
at " ar 8y 96 " "9 rsing 0

14 ac 1 a ac 1 a4
- D‘(,_(r" ‘)r . (,\'mt) ')+ — ,f):l{,
i \2or ar) " rising 90 20) " visinto a0

(Refer Slide Time: 22:28)

U

rectangular Cartesian coordinate system for this situation. Let us choose that equation and
cancel the terms that are not applicable. Eq. B from Table 2.3.2. - 1 since ¢ and D, are constant

0 (e # f(2)
0(SS) =0 0) )(v,=0) =0 0) =0(c;» f(¥) 0 on)
gy ) de ) ¢ % 12 ¢
4 (1 Vy—+V pa ool oo el
at X ox t%3 Z 0z tlax2 7 ay? ¥z !
%,
Therefore, D; re e 0
hich is th tion 2.3.1 btained earlie gh shell balances

icable, can sometimes become cumbersome, and thus this conservation

equation approach would be co

€ In many situations

Note that we derived these conservation equations based on standard shells - cuboidal, cylindrical or spherical
If the shell shape is different, for example, if the c.s. area is voriable, equations A2, B2, and €2 are not applicabl;
However, verify that A1, B1, and C1 are not affected by this aspect, and are generally applicable

I showed you how very simply speaking, you just take the equation, you cancel the irrelevant
terms. And at one swell step, you get the equation that we got through a lengthy derivation
through shell balances, okay, this is the advantage of using one such thing therefore it is already
gone into deriving a general enough equation which can be applied. Because this equation does
not hold when there is a change in your cross section, over your system of interest and so on

and so forth. You need to keep that in mind.

Then, we had applied to various situations. The first one was of course, the rectangle Cartesian
coordinate system case, then we had used it to look at steady state diffusion of certain species
across walls across membranes, then across tubular walls, we looked at the trachea sorry the

bronchiole and a drug distributing from the inside of the bronchiole to the outside.



How do you look at that, and then we looked at diffusion through spherical porous pellets. And
then these 3 were without reaction, then we brought in a reaction and looked at an enzymatic
reaction where the enzyme is immobilized inside a porous pellet. So, that is the application of
the equations to the 3 different geometries. And then we looked at an unsteady case where once
you bring in an unsteady term, the time derivative, it complicated the mathematical effort

significantly, okay.

And as all those things we saw, the unsteady state case was, we had a protein solution that is
solving onto a surface. And we were interested in the concentration profiles in that quiescent
liquid about the surface, the variation of the concentration profiles with time. Okay, those are
the things that we saw.

(Refer Slide Time: 24:39)

r "“luml’l ‘

Pseudo-steady state approximation (PSSA)

And finally, let me have been at this for a while, | think we should stop to avoid fatigue. I will
just say this. It is important. Then we will stop for today and continue in the next class. Okay.
So, we also looked at a very powerful approximation, a very powerful idea, called the pseudo
steady state approximation.
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Pseudo-steady state approximation (PSSA) is a view/technigue that can be used S
to simplify the analysis, and the mathematical complexity ‘ V2 Y
when comparing two processes of widely varying rates X _;

To understand the pseudo steady state approximation, let us consider the process of car manufacture.
Let us focus on three of the processes as shown below.

Process Making the bolts that Making the engine Making the whole car

are used in the engine

Characteristic rates | Say, 1 bolt per 5 seconds | Say, 1 engine per 1 hour | Say, 1 car per 24 hours

If we focus on engine making, whether the rate of bolt making is 55 or 85 or 2 5%, ... does no affect the rate of
engine making

If our interest is engine-making, the process of bolt-making is fast enough to be considered at pseudo-steady state,
i.e. the changes in the rate of bolt-making (unsteady aspects) will not much affect the rate of engine-making

Also the rate of whole-car-making is s slow, that it is not even relevant to the rate of engine-making.

Thus, for the Interest at hand, i.e. engine-making, the process of whole-car-making can be taken as “frozen

It is something like this when you have, when you are comparing to processes of widely varying
rates, the much faster process can be taken to be at steady state, if the interest is this slower
process.
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Now, let us consider some cellular processes.

o
tagarst”’

[ Process Enzyme action Cell growth/division | Natural mutation

l Characteristic rates | One in every 10's l One in every 10% s J One in every 10* s

If we are interested in cell growth/division, the enzyme action can be taken to be at pseudo steady state,
and natural mutation can be considered ‘frozen

Now, let us consider a thin membrane through which diffusion of a species occurs
Let us take the membrane as the system

Let us say the interest is in the changes in the species concentration in the solutions that are separated by the
membrane

If the diffusion through the membrane is fast enough compared to the changes in the concentration of the
species in the solutions separated he membrane, then the diffusion through the membrane can be
assumed to take place under steady - state conditions.

So, we had applied this to come up with the permeability of a coating layer, when the
permeability through the coating layer is of interest, the experiment that is done as measuring
permeability of a mechanically stable membrane, and then you put the coating layer onto the
membrane and measure the combined permeability.

(Refer Slide Time: 25:37)



I
Let us consider the permeability of a model protein (albumin) a coating used to improve cell adherence on surfaces. "

The permeability can be measured using a cylindrical vessel separated into two chambers, A and B, by the material
whose permeability is being measured

Since the coating is too thin to have the
between the two chamt

as the above mentioned separator
ability

essary mechanical prop
ers, another technique is used to find the nex

The permeability of a membrane with sultable mechanical prope
membrane with the ‘coating’ of in! red. Th
of 1.33 cm? and the volume of each cham (AorB)is 2 cm

measured. Then, the permeability of the
vrane used in the experiment Is circular with an area

The initial concentration of growth factor in chamber A at the start of the experiment was 10 mg ', and no growth
factor was initially present in chamber B. The growth factor concentration at different times (in min) in chamber B
from the start of experiment are given in mg I'

Time Concentration with membrane Concentration with coated membrane
0 .

20 04 0.010

40 0.7 0.020

80 13 0.035

Determine the growth factor permeability of the coating. Assume that the flux through the membrane occurs gy
faster compared o the change in concentrations on both sides of the membrane.

And from that data to extract out the relevant membrane permeability, we had to use the pseudo
steady state principle and get the permeability.
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& x
Solution strategy g R
Consider the membrane and t 3 s
Th tanc 5) are additive N
Permeability is equal to DK/L, where D Is the diffusivity, K, the partition coefficient, and L the membrane thickness El

That is what we had seen. That was the example that was given. The pseudo steady state
concept itself was a very powerful concept that can be use in any situation whenever you
compare to processes of widely varying rates and the interest is in the slower process. Okay. |
think that is what we did for mass flux, mass transport, mainly through diffusion okay, there is

no mass flux through bulk movement.

Although the equations that were derived had the ability to handle that also. But for better
understanding, we just forced the driving force to a concentration gradient. In all these cases,

we took examples here only the concentration gradient was the driving force, and showed you



the various applications of it. When we come back in the next class, we have been at this for a
while now and we come back, we would look at momentum flux, review that and forward. See

you in the next class. Bye



