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Kinetics of a Process with an Enzyme Immobilized on a Non-porous Slab 

 

(Refer Slide Time: 00:16) 

 

Welcome, we are looking at multiple driving forces causing fluxes, we looked at two approaches 

essentially an approach that involved simultaneous solution of the conservation equations and the 

constitutive equations as needed. That was one that needed extensive mathematical effort and the 

transfer coefficient approach which does not need so much of a mathematical effort but it would 

be applicable only to a small range of situations. 

 

And therefore the confidence level associated with this approach is less compared to the equations 

approach. However, it is very useful, it gives us a lot, it even gives us insight into the processes 

and therefore we are picking up that approach also. Today we will continue with the transfer 

coefficient approach, simultaneous concentration gradient and velocity gradient. The particular 

example is that of kinetics of enzymes immobilized on a non-porous surface. 

 

I think we did look at concentration gradient, velocity gradient even at the previous situation when 

we looked at kLa and so on and so forth. Then we took a slight detour and looked at some even 



research applications of the principles of transport phenomena, the basic principles of transport 

phenomena applied to novel research aspects and so on so forth, even existing research aspects 

before the use. 

 

Throughout the course integrated well-meshed into the course, we had a lot of situations where 

you saw applications to industry application, industries situations, industry problems and so on so 

forth, therefore I wanted to show you even the application even in cutting edge research and that 

is what we saw through the previous few classes, let us begin the kinetics of enzymes immobilized 

on a non-porous surface. The transport aspects associated with it which impinge on the process 

dynamics itself.  
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Remember earlier in the course when we looked at diffusion back in the second chapter, we 

considered the situation when diffusion played a major role in determining the rate of reaction, so 

it was something like this it was heterogeneous situation, where you had a pellet and so on so forth, 

pellet in the in aqueous environment in a liquid environment and things like that, therefore the 

overall system is heterogeneous.  

 



We looked only at the pellet which is some what heterogenous however what I mean by 

heterogeneous is from the process point of view. You had solid phase, liquid phase and so on so 

forth and things coming in to the porous pellet you remember the situation when we looked at 

enzymatic reaction occurring inside the pellet substrate had to get into the pellet through diffusion 

through its various pores get reacted there and then the product needs to move out. 

 

So there is a process of substrate moving in product moving out or in other words there is transport 

of product in transport of product out and then there is reaction that is occurring. Both these aspects 

the transport and the reaction have different time constraints associated with them, the 

characteristic times could be different or they could be comparable, so depending on whether they 

are comparable or whether they are very different. 

 

The kind of process kinetics could be very different could it could either be completely reaction 

based or it could completely be transport based and so on so forth. We looked at an effectiveness 

factor that gave us some ideas to what is happening there and so on. We are continuing on the 

same lines however here there is no diffusion inside the pellet it is something else. Earlier diffusion 

played a major role in determining the rate of a reaction that occurred inside of porous spherical 

pellet.  

 

Now we are going to consider a reaction on the surface of a non-porous slab, there are no pores 

there, no pores of relevance there. So we have a non-porous slab present in a fluid and the substrate 

is present in the fluid. It goes to the non-porous slab surface reacts there and the product moves 

out, that is the process here. So in the presence of mass transport of reactants from the bulk fluid, 

so the reactants are moving from the bulk fluid to the surface. 

 

They are getting reacted there and then they move out. So the assumptions to at least make the 

problem tractable and to make it meaningful in certain cases, an enzyme is immobilized on a slab 

that is non-porous that is a statement of the problem itself. The reaction occurs only on the surface 

of the slab. The intrinsic enzyme kinetics is Michaelis-Menten the liquid kinetics the solution 

kinetics is Michaelis-Menten. 

 



And therefore the immobilized constants the k’m and v’max would be different from the case of 

Michaelis-Menten, but that is okay that we already know the form of the equation would be the 

same and we are going to derive an expression for the process rate, process rate is the overall thing 

the individual aspects that contributed to the process rate such as transport and reaction is what we 

talked about. 

 

Here we are going to derive an expression for the process rate at steady state. Lets begin this is the 

situation here you have these slab. The longitudinal section is going to be a rectangle you look at 

it from the end it is going to be a rectangle and you have y dimension that is going into the screen. 

We are looking only at the x and z dimensions maybe and so the hashed part is the slab. 

 

You have the enzyme that is immobilized on either surface and you have a certain region which is 

the conceptual liquid-solid film; liquid here, solid here where the concentrations significantly 

change compared to the other regions, so this region where the concentrations change is the 

conceptual liquid solid film similar to the gas liquid film that we already see. So the substrate 

moves in here the concentration in the bulk could be a constant and here it drops it reacts here the 

product moves out. 

 

Now let us consider the rectangular cartesian coordinates because it is a slab. x y z is good enough 

for a for an easy description of this geometry so we will consider that.  
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We are unsure of the kind of flow in the liquid, nothing is mentioned about it, it could be slushing 

around it could be a nice laminar flow or it could be even still we do not really know, so to develop 

a reasonably general solution. Let us take it to be undefined and let us take a transfer coefficient 

approach, once we take a transfer coefficient approach then it becomes simple you use a different 

mass transfer coefficient. 

 

And that would represent the conditions, how whether we have direct access to it and things like 

that is another aspect to be considered totally different aspect to be considered that may not be so 

however, let us take a transfer coefficient approach to represent the flux of the substrate from the 

bulk to the surface. So the flux which is modes per area, modes per time per area perpendicular to 

the direction of motion is some k’s times a difference in substrate concentrations  (S0 – S) at the 

surface, so what is this case? or this it is on the form of a transfer coefficient times a concentration 

difference, so you can see the use of a transfer coefficient approach here. Let us call this equation 

6.2.2-1. This of course is the flux as I mentioned. K’s is the mass transfer coefficient per unit area, 

because the area basis is relevant here, so this is per unit area, so that is why there is a ‘ there and 

it can be obtained through correlation that are found in the literature. 

 



 

S0 as the bulk substrate concentration of the liquid S is the solid liquid interface substrate 

concentration, and the solid liquid interface where the reaction happens of course nothing happens 

on the other side because there are no pores but the entire reaction happens in the surface and S 

represents that substrate concentration. At steady state the substrate cannot accumulate at the 

catalyst bulk interface. 

 

At the catalyst bulk interface, at the enzyme bulk interface. The, which is here. I think this is where 

our coordinate begins. So, we are looking at the surface here, at this point where the enzyme ends 

we are looking at the concentrations. And what it says is at steady state, they cannot be any 

accumulation of either the substrate or the product. So, at steady states substrate cannot accumulate 

at the catalyst bulk interface.  

 

Therefore, the rate at which substrate reaches the interface must equal the rate at which it gets 

consumed. That is essential for steady state otherwise it is not going to be at steady state. So if we 

are doing a steady state analysis, if we are forcing a steady state analysis, which is relevant for 

most of the time by the way then this condition must be satisfied. Therefore the rate at which it 

reaches the surface is ks now (S0 – S) note that this ks is different from k’s, k’s is a surface basis ks 

is on a volumetric basis. 

 

Because the right hand side here which is the Michaelis-Menten reaction is on a volumetric basis 

and therefore we need the same basis to compare, contrast, manipulate and so on so forth. So the 

rate at which the substrate reaches the surface on a volumetric basis ks times S0 - S equals the rate 

at which it reacts because it cannot go anywhere else [v’max S/(k’s + S)] and we are going to call 

this as at apparent rate vapp.  

 

 



Let us call this equation 6.2.2 - 2. As I mentioned ks is the mass transfer coefficient on a volumetric 

basis. k’m  v’max are Michaelis-Menten constants modified because of the or dashed here because 

these could be different from the intrinsic or the solution kinetic constants. This is the immobilized 

case here. And vapp is the apparent velocity of the process itself. 
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We have been doing things with the non-dimensional variables, we know that it generalizes 

solutions to a larger extent, so let us do that here also. Let us define non-dimensional variables as 

follows. The substrate concentration non-dimensional variable x = S/S0 normalize with respect to 

bulk substrate concentration equation 6.2.2 - 3. And let us bring in a Dahmkohler number Da which 

is mass reaction rate divided by the maximum mass transfer rate. Or in other words the reaction 

rate, this is the maximum reaction rate divided by the maximum mass transfer rate, that is not mass 

let me correct it right away. So its a ratio of maximum reaction rate divided by the maximum mass 

transfer rate So there, we said the two major processes one is transport and then the other one is 

the reaction. So the Dahmkohler number gives us an idea is to which one is more important.  

 

In terms of the maximum possible rates that are there these may not be the rates that are actually 

present in the particular situation, the particular situation could have influences from transfer, 

could have influences from reaction together if they are comparable and so on so forth. So this 

gives us an idea as to if you consider the extremes in both cases, what would be the ratio? So that 

would give us some idea as to what to work with.  



 

So its a ratio of the maximum reaction rate to the maximum mass transfer rate. The maximum 

reaction rate, you know is v’max rate that is the maximum rate at which it can occur the Michaelis-

Menten kinetics and ks is not as a maximum mass transfer rate because ks (S0 – S) is the actual 

mass transfer rate when s =0, you will have the maximum mass transfer rate. So you have  

ksS0 in the denominator here. 

 

 

Let us call this equation. 6.2.2 - 4. If the Dahmkohler number is much-much less than 1 then the 

reaction rate is slow in comparison to the mass transfer rate and the processes reaction limited, 

remember the slowest step determines the rate. So if the rate is rate of one aspect of a serial 

processes slow compared to the other that one is going to determine the overall process of it.  

 

So if the reaction is slow, the process is reaction limited. If Dahmkohler number is much-much 

greater than 1 it means that the mass transfer rate is much slower compared to the reaction rate and 

the process is mass transfer limited. So the mass transfer rate would determine the process rate. If 

the reaction is slow, then the reaction rate would determine the process rate. So that is the meaning 

of reaction limited and mass transfer limited. 

 

Let us define another non-dimensional number that is needed k’ its nothing but k’m / S0, equation 

6.2.2 - 5 and if we substitute x Da and k‘ into a expression here. Its nice we do not have differential 

equations here or as yet. This is our governing equation when steady state occurs and therefore we 

are substituting these variables with the non-dimensional variables.  

 

 



If we do that, we would get (1- x )/ Da equals x /( k‘ + x) equals (vapp / v’max). I just thought I will 

show this to you and then ask you to pause the video here and go from the equation that has been 

given on with regular variables and replace the non-dimensional variables. See whether you get to 

whether you arrive at this answer it will be a nice practice, it will also give you some insights as 

to what is happening, please pause the video here and go forward. 

 

I am sure you would have arrived at this (1 – x) by Da equals x/(k‘ + S) equals vapp /v’max, this is 

equation 6.2.2 - 6. Are we doing in terms of time, fine few more minutes maybe, so if you solve 

these two parts let us this is you know, there are 2 parts to this equation or 3 parts of this equation 

this, this, this, this, and then this, this will take this and this first (1 – x) / Da equals x /( k‘ + x). 
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If we solve this we are looking for x an expression for x in terms of the other variables it is quite 

clear 1-x here k + x here cross multiply you are going to get a x2 term, and you have x times Da, 

so it is a classic quadratic equation, therefore your solution, x is nothing but [-𝑏 ± √(b2 - 4 ac )]/ 

2a and so on so forth. That would turn out to be [- 1±(√1+4K’/β2) the whole multiplied by (β/2) 

where β = Da -k‘ +1. 

 



 

So inside the bracket above, we use + when β is greater than 0 and we use - when β is less than 0 

that provides the realistic solution. Now the process rate, which is given by vapp can be found by 

substituting x, we have an expression for x and we have vapp / vmax equals (1-x)/Da or equals x / 

(k‘ + x) either one should be fine let us see what I would use here and before that we are going to 

look at our effectiveness factor. 

 

We have already seen the effectiveness factor in the case of diffusion with reaction in a porous 

pellet, porous spherical pellet, in the second chapter this we are going to define an effectiveness 

factor on the same lines, its nothing but the observed reaction rate divided by the reaction rate in 

the absence of mass transfer resistance. Again observed reaction rate is what we observe. Reaction 

rate or observed process rate you can say. 

 

Reaction rate in the absence of mass transfer resistance or process rate in the absence of mass 

transfer resistance, this is nothing but a conceptual rate the maximum possible under the given 

situations and this you can mathematically get by putting S equals S0 because the entire substrate 

being available at the bulk concentration at the interface or the substrate concentration at the 

interface being the bulk substrate concentration.  

 

Is the situation when there is no mass transfer resistance, and that would give the process rate of 

the absence of mass transfer resistance. 6.2.2 - 8. And the effectiveness factor can be used to 

evaluate the effect of mass transfer on process rates as we have already seen. We are reinforcing 



these concepts which are very powerful concepts, especially in heterogeneous processes 

heterogeneous, you know, its not the same homogeneous one phase system and so on. 
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Now we substitute S equals S0 in 6.2.2 - 6 which is a regular expression here in terms of the non-

dimensional variables, S equals 0 implies x equals 0, So S equals S0 that gives you the maximum 

rate, then you get this effectiveness factor as x /( k‘ + x) divided by 1 /(k’+1), again, I would like 

you to stop the video here go back work this out convince yourself that this is indeed happening, 

you do not have to take my word for this. 

 

Check whether there are any errors that are kept in here. If there are any errors let us know in the 

comments section or the discussion forum, ask the question forum. This is equation 6.2.2-9 please 

pause the video. See whether you had you spotted any errors here, if you did spot any error, then 

let us know. When Da tends to 0, what is Da maximum reaction rate divided by maximum mass 

transfer rate.  

 



 

 

What is effectiveness factor? It is the actual reaction rate divided by the reaction rate in the absence 

of mass transfer resistance. Therefore you are tending to the completely reaction controlling 

interchain when the effectiveness factor tends to it. Then you could write from the same equation 

there vapp as [v’max S0 /( k’m + S0)]; the process kinetics is the same as intrinsic kinetics here, 

microsmetic kinetics mass transfer does not affect the process rate.  

 

There is no scent or there is no hint of any mass transfer related term here. The process rate has 

completely determined by the intrinsic kinetic rate. The mass transfer rate does not affect the 

process rate. Whereas the reverse happens when Da tends to infinity. When Dahmkohler number 

tends to infinity what does it mean, the mass transfer rate is much-much less the denominator is 

much-much less compared to the reaction rate. 



 

And therefore the mass transfer rate is much slower compared to the reaction rate and therefore 

the process becomes completely mass transfer limited. You substitute that noting that k needs to 

be finite you would see that 𝜺g the effectiveness factor tends to (1+ k‘)/ Da. And the apparent rate 

becomes ks times S0, you see this completely mass transfer determined the apparent rate here the 

apparent rate is completely reaction determinant and there is no trace of reaction kinetics in the 

process kinetics here.  

 

It is totally mass transfer limit. So this analysis comes in very handy in right from analysis to 

design to even operation at times and this is a well known analysis in chemical engineering terms 

here, we have applied it to the enzyme reaction situation, that to an enzyme that is immobilized 

onto a surface of a non-porous slab. I think that is all I have here for today. I think we have been 

at it for a while now, good to take a break. 

 

In this class we looked at simultaneous velocity gradient and concentration gradient and we 

handled the velocity gradient part of it through transfer coefficient approach and got ideas as to 

what determines the process rate depending on the value of the effectiveness factor. Let us take 

things forward when we meet in the next class. 

 


