Transport Phenomena in Biological System
Prof. G. K. Suraishkumar
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Lecture - 49
Review of Heat Flux

Welcome to this class. So far we have looked at 3 conserved quantities and their fluxes. The first
one was mass, the second one was momentum. And the third one was energy. These were the
conserved quantities, we looked at mass we looked at momentum and then we looked at thermal
energy, especially in the context of the total energy being conserved. We just finished the thermal
energy flux chapter in the last class. And therefore let us review this before we move forward. A
short chapter but it is it might be worthwhile reviewing it.

(Refer Slide Time: 01:00)

We know that the totol energy is conserved

In this chapter, we will focus on the trans!er'o/ energy as heat (thermal energy)
across system boundaries,

We started out with the aspect that we have known for a long time that the total energy is
conserved. And then we said we will focus on the transfer of energy as heat alone or thermal energy
across system boundaries in this case, of course, we had to look at all aspects of that.

(Refer Slide Time: 01:19)
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We already know that thermal energy (heat) transfer can happen by 3 mechanisms: conduction, convection and
radiation
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We need to understand the mechanisms a little better

Conduction: The transfer of heat due to molecular processes

We have seen earlier that constitutive equations govern some fluxes -
Fick's first law governs diffusion (mass flux)
Newton's law governs laminar flow (momentum flux)

Similarly, a constitutive equation known as ‘Fourier’s law’ governs conduction (energy flux)
In one dimension, the Fourier’s law:

dr
R e Eq.4-1
I dx
q, = heat flux in the x-direction (units: J s*m ?)
T =Temperature at any position x (units: K)
k = thermal conductivity (units: J s* m *K*)

Thermal energy is not conserved whereas total energy is conserved. And then we looked at the
mechanisms by which the thermal energy gets transferred, the first one was conduction due to
molecular processes. The second one and here we saw the constitutive equation Fourier’s law,
which you would have definitely seen in earlier classes. It is nothing but in one dimension gx, the

key flux, the heat amount, the heat rate per time per area, in the direction perpendicular to the
direction of transfer equals -kz—i therefore this is the temperature gradient which is the primary

driving force for thermal energy flux.
(Refer Slide Time: 02:06)
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In three dimensions, in an isotropic medium, k # f(x,y,%)
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Table 4 -1 gives the component-wise equations in the three coordinate systems

In a moving fluid, § represents the flux of thermal energy relative to the local velocity
Now, let us define a quantity called thermal diffusivity: «

_k

a P
06

Eq.4-3

Ffm st g 5
Units of a: e S

kg m3hg=lk=1

Can you compare the units of « (heat energy) with those of D (mass) and v = £ (momentum)?
»
What did you find?




And then in 3 dimensions we saw that as g = - k VT divergence. And then we saw the conduction
equation in table 4 1. This is the thermal diffusivity which is the equivalent of the mass diffusivity
or kinematic viscosity in the other 2 conserved quantities earlier.

(Refer Slide Time: 02:32)

Table 4 = 1 Thermal Energy Flux (when only conduction is involved)

Rectengular:

g==k

17) ) I

dx 0}" dz o

Cylindrical:
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Spherical:
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Then this is the equation of thermal this the table which contains the thermal energy flux equation
when only conduction is involved in the 3 coordinate systems and requested you to make a copy
of this and keep it as a part of your notes where it can be easily accessed because this would be
used whenever this conduction is involved.

(Refer Slide Time: 02:59)
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Convection: Flow induced heat flux

Two kinds of convection exist:
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Forced convection: heat transfer due to flow generated by an external means such as a pressure gradient caused
by a pump or a blower

Free convection: heat transfer due to a flow, normally small in magnitude, which is generated by a density differential,
which in turn is caused by a heating/cooling

We will see much more of convective heat transport in a later chapter

And then we looked at convection, which is flow induced heat flux, there were 2 types of

convection, either forced convection where the flows generated by external means a free



convection where the flows generated by internal means maybe a change in density because of the
change in temperature. And then we said in this chapter, we are going to mainly focus on the
conductive transfer the convective transfer we will look at in the last chapter.

(Refer Slide Time: 03:28)
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Radiation: Heat transport through electromagnetic waves
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From early physics/chemistry we know that the transitions of electrons between various energy levels in an

atom result in emission of radiation

Thus, any substance at an absolute temperature of TK > 0 K will emit radiation over a range of wavelengths
Further, when any electromagnetic energy is incident on a substance, it will absorb the energy due to its electronic
transitions
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When the energy is transferred as heat through radiation, from say a body to its surroundings, the radiative flux is given
by Stefan-Blotzmann’s law:

tr = 0€ (Tpoay = Trr) fq.41.-1

a: the Stefan-Boltzmann constant = 5.67 X 108 W m? K
¢ is emissivity of the body
T: the absolute temperature

.
Radiative flux can dominate the heat transfer processes at high temperatures such as the ones that occur in steam-based
heat exchangers in the bioprocess industries

And then we very briefly touched upon radiation, the heat transfer through electromagnetic waves,
which really does not have an equivalent mechanism in mass and momentum transfer. And this is,

we looked at the Stefan-Boltzmann’s law which gives us the radiative heat flux

The Stefan-Boltzmann law that governs radiation states that the intensity
of radiation is proportional to the fourth power of the temperature in K of
the emitting body. When the energy is transferred as heat through radiation,
from say, a body to its surroundings, the radiative flux can be expressed as

qr:GE(Tbtdy 7Ts‘irr) (4.1-1)

where o, the Stefan-Boltzmann constant = 5.67 x 10°®* W m=2 K4, ¢ is
emissivity of the body, and 7 is the absolute temperature

And T of course an absolute temperature and kelvin radiative flux can become important at high
temperatures is what we mentioned. Then, we started looking at the equation of energy. We said
that there are 2 broad approaches for solving this flux related aspects they heat flux related aspects.
One is the shell balance approach the other one is the conservation equation approach. | have not

taken up the shell balance approach here.



I have spent enough time with shell balances already in mass flux and momentum flux. You need
to just use the same principles here. Record the whole thing is do a balance based on balances
written over a thin representative ship we looked at equation of energy in some detail.

(Refer Slide Time: 05:19)

While discussing mass and momentum transfer, we saw that although shell-balances provided a physical feel s
for simphe problams, the conservation equations were easier ta employ for complex problems/ situations, ,:.7 i E
espectally in co-ordinate systems other than rectangular N
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Let us look at the equation of energy that can be applied in any heat transport situation

NPTEL

Let us consider the fow of a pure 1l theough a stationary volume (control volume; the same as the rectangular
bax In Cartesan coordinates that we first corsidered for mass and momentum transfer)

Z {xedy, y+ by, 2+ 02)

And | showed you how we could go about deriving this energy equation of energy. Again we
consider the same control volume as earlier.
(Refer Slide Time: 05:28)
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v Internal encrgy, which can be visualized as arising from the vibeational, rotational and poteatial eneegies of the molecules
* Kinetic energy, which is assoclated with the observable {bulk) motion

+ Potential energy (to begin with, it is clubbed with the work done term because it can be interpreted as the work done
apainst gravity)

+ Energy that crosses the control volume boundaries as heat through conduction
+ Energy that is generated as heat in the control volume by say, metabolic activitles
+ Work done against the stresses (and other aspects, such as gravity)

o Other enerigies (say electrical, magnetic, surface, ete., ), which we will ignore now = they can be added to the total
energy term in the fina! equation by mere algebralc addition, if needed

And we consider these energies internal energy— Kinetic energy, potential energy along with the
work done term energy that crosses the control volume boundary so conduction separately, energy



that is generated as heat in the control volume by metabolic activities, worked on against stresses
and other energies, if available here we did not consider any of these.
(Refer Slide Time: 05:51)

Let us write the law of conservation of energy, in our intuitive balance way, as

d(E)

i (e = o) + (g = Tec)

v
Energy that v
accumulates Energy that CROSSES
IN the system  the system boundaries

Energy generated consumed

IN the system = need to be separated
as heat and work components
(thermodynamics)

Let us further separate the convection and conduction aspects:

{Rutu of uumnulumm}
of LE+K.E

in by convection y
by generation, say etc.,

{Nz’t rate of heat mimnmx} net work done by
by conduction } [Uw system against ]
s
metabolic }

Netrate of .LE+K.E :
= ‘+ ]Ner rate of heat addition stresses, gravity,
+

I.E.: internal energy Eq.42.-1

K.E.: kinetic energy

And then we wrote our law of conservation of energy by considering energy as a conserved
guantity. So, the same equation that we wrote for mass would be valued here dE/dt of the
accumulation term equals input minus output plus generation minus consumption, net input minus
plus net generation. Then we this is what crosses and these 2 are what is in the system also, here
we need to make a difference between heat and work aspects because they are not interconvertible

completely interconvertible that we know from thermodynamics.

And then we also separated the convection conduction terms because, they are given by 2 different
expressions. And this becomes the balance the heat and the energy balance for the control over the
control volume rate of accumulation of internal energy plus Kinetic energy on the left hand side.

On the right hand side you have net rate of internal energy plus kinetic energy in by convection.

Net rate of heat addition by conduction net rate of heat addition by generations say metabolic
minus the net work done against the system against stresses gravity and so on so forth. Then we
plugged in the terms for each of these, | would asked you to do the details fill in the details, | have
not given you each and every step in this derivation.

(Refer Slide Time: 07:19)
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Now, we need 1o take the various aspects, term by term, use input from thermodynamics, etc, and
arrive at a useful expression far thermal energy transport

Note that that the total energy is conserved, but the thermal energy alone is not conserved
However, thermal energy transpoet is of interest to us in this chapter NPTEL

| am not going to present the derivation here, but it is given, stepby-step, in the textbook
It s recommended that the leamer goes through the derivation and convinges himseltferself

Here, we will directly present the equation

d (= 1. = e A v e
ap(\l}d—sz") = -(V.{Jl‘[U+§1“)- -(v.q) +pli.g)
: Rate of work done
te of energy rate of energy In puv ;
Rate of energy = 9: 9":'!\;":0‘1 b',‘corduclggn MY on lM'hldvp!uvby
gain puv y Convectio gravitationa! forces
= {Epf) 7 (F' [£-7]) +@ e - Wagher
2y matadelte
Rate of workdone Rateof workdone ™
onthe fluid puvby onthe fluld puvby
Dissure forces wiscous forces fq.42.-3

And this would turn out to be the equation of thermal energy rate of energy gain per unit volume
In vector notation

ENSE L (] L o

— [U +Ev2) :—(V.pv[U +5'..*2D - (V.gq) +p(vV.g)

ot
Rate of work

Rate of Rate of Rate of
) ) done on the
energy energy in, puv energy in, puv )
, ) , fluid puv by
gain puv by convection by conduction

gravitational forces

—(V.pv) —(V.[T.¥])
Rate of work done  Rate of work done
on the fluid puv by  on the fluid puv by

pressure forces viscous forces
+ Qsay, other like metabolic heat ~ Wother (42-3)

where puv is per unit volume.
So, this was the equation that we got by considering the various energy relevant aspects written in
terms of thermal energies and so on so forth.
(Refer Slide Time: 08:37)
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DT LT [\ R ;
pGpp=-(7d)-T(5 Al (22 75) + Qotrer = W other fq.42-11

The " is a scalar product between two tensors or equivalents
For example, the ' product between 7 and i (note that both have 9 components, each, in a 3-D system)

is the scalar given by

And then we could consider the relationships in thermodynamics to get it off of useful form of the

in the form of variables at there are normally measured or can be easily calculated

DT - M) = S :
=—(V-q)-T| =— | (VV)—(T:VV) + Ouper —W.
Dt ( Cj} aT 1? ") ( 1) Qother other

pCy

And this equation is available in the 3 different coordinate systems. One in general and 2 for

especially case for Newtonian fluid with constant rho and k. So | would asked you to make a copy

of that table also.
(Refer Slide Time: 09:29)
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Let us now present the equation of thermal energy in the three different coordinate systems (Table 4.2. - 1)
As before, one needs to refer to this table often when the analyses are being set up




This we saw as the scalar product between 2 different tenses then because | showed you the tables,
| am not going to show it to you again you have a copy of it already. There we looked at the
temperature profile in a tissue this was equivalent to the case of velocity profile and laminar flow
in a cylindrical pipe.

(Refer Slide Time: 10:04)

Find the temperature profile and the maximum temperature attained in a tissue at steady state, caused by

heat generated due to metabolism, say in a tissue.

Let us approximate the tissue to be a cylinder of radius R, thermal conductivity k, and with a uniform and
constant heat generation, Om . Let us also assume that the conditions in the body are such that the surface of
each tissue is kept at a constant temperature, Ty, and that there is no heat flux dlong the tissue length. Also

assume that no other work is done by the tissue.

This was set of in terms of a problem find the temperature profile, maximum temperature attained
in a tissue at steady state caused by heat generation due to metabolism. And then we assumed or
approximated the tissue to be a cylinder of radius R thermal conductivity k and with uniform and
constant heat generation Q,,, and we also assume that the conditions in the body are such that the
surface of each tissue is kept at a constant temperature Ts 37°C and that there is no heat flux along
the tissue length also assume that no other work is being done by the tissue.

(Refer Slide Time: 10:42)
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0 work

(Refer Slide Time: 10:51)

L0t us take Quner = (e * metabalic heat rate, Then, we can write

kd {41\ .
Rl (, E) =G Ea021.-2 NPTEL
8C1 atr=0, T=finteor Z—rza i
r

8C 2 *Kr=R, T=T, Eq 4214

Integrating Eq. 4.2.1, = 2 once with B.C. 1, we get

o da
o Hm

Integrating spain with B.C. 2, we get

T=71, LS 1-(£)7I

421~
[ i kAL




Using Eq. B2 (cylindrical coordinates) from Table 4.2-1,
can cancel the irrelevant terms

in which we

r=f0) T=f() All the velocities

are Zero

All the velocities

are zero
) 2
):| } + Qother _\%ther
: No work
(4.2.1-1)

Then we saw the same solution in terms of the non dimensional variables.
(Refer Slide Time: 11:23)
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Now, let us attempt to express the results in a more general fashion. If we
non-dimensionalise the variables

(Refer Slide Time: 11:56)
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The rate of heat dissipation at the cylindrical surface, for the tissue length, L = area x flux

= 2mRL X qpl;- q.4.2.1.-7

b

=
)
=i
m
~

= 2R (k)| = WALy £q.42.1.-8

“ar,
From Eq. 4.2.1. =5, Ty, 0CCUrs wherer =0

oy OnR?
Tnax = Ts + ==

Thus,

For typical values, say R = 1 cm, Om =5calem®h?, k=107 cal (cm.s.°C)* and T, = 37°C

5x 12
37.3%

=374 ————=3]
T (4x107%)3600 o

The temperature at the centre of the tissue could be 0.3 °C higher than at the surface

Then, we substituted typical values to find out the rate of heat dissipation at the cylindrical surface

we got a value of a rather we this is



The rate of heat dissipation at the cylindrical surface, for the tissue
length, L is

Area X Flux = 2nRL X q | _p (4.2.1-7)
dT :
:211'RL(—/<—J -nR*LO,, (4.2.1-8)
dr J),—g
From Eq. 4.2.1-5, we can say that 7 occurs when r = 0.
Thus
), R*
T..x =T, +7L’”
' 4k
For R = 1 cm, Qm =5 cal em™ h™, k = 107 cal (cm.s.°C)™ and T, = 37 °C,
we get '
2
T =37+ S x| =37.3°C

(4x1072)3600

if you substitute the appropriate values you will get the rate of heat dissipation. Here | substituted
to get the maximum temperature in the tissue which would be the centerline of the cylindrical
tissue substitute typical values. We substitute that we get a maximum temperature of 37.3 °C,
which is 0.3°C higher than the surface temperature.

(Refer Slide Time: 13:01)
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In a microanalysis system, for the determination of an analyte, the sample is first sprayed as 10 pL
spherical droplets into a heating zone. The droplet needs to be heated to 60 °C to complete a reaction
that is a necessary step for the analysis.

Assuming that the properties of the sample drop are the same as that for water (since the sample is
predominantly agueous), estimate the time needed®o reach the steady-state temperature in the droplet.




Then, we looked at and unsteady state case they bring in time derivative complicates the math, but
there are ways of solving things. So in unsteady state heat conduction to appreciate that again we
looked at nice problem, this is the micro analysis system, where droplets of 10 microliters are
sprayed, the surface temperature is 60°C and the entire droplet needs to get to 60°C are very close

to that for the process to be a success.

So, the reaction to occur appropriately for the next step and so on we were trying to find out how
long would it take for the temperature to reach let us say 99% or 60°C throughout the draft. The
temperature is changing with time at a point in the droplet and therefore, it is an unsteady state
case directly.

(Refer Slide Time: 13:57)

We are dealing with a sphere.
Thus, it is most convenient to use spherical coordinates

From Eq. C2 of Table 4.2. - 1, after cancelling the irrelevant terms, we get

ar _(k\1a(,dr e
at  \pCy) ror "o it

Let us define k
—| =«
(PCV)

Let us say that the drop surface temperature being raised to 60 °C (T;) at the start of the cycle, t =0
1C.: for0<r<R, t<0, T=T, Eq.4.22.-2

ar

B.C1:  forr=0, t>0, T_() £q.4.2.2.-3
or

r=R t30, T=T, £q.4.2.2.-4

It is a spherical and therefore, we can use spherical coordinates we took we can take equation C 2
from table 4.2 - 1. And when we cancel the irrelevant terms, we end up with this equation

.a_T: j\ L’i(lga—TJ 177
da |\ pC, )r?or or (4.2.2-1)

And then we define the alpha which you already knew, we already seen the thermal diffusivity in
a different form o = k/(pCv).

We call it a, the drop surface temperature Ts was 60°C, the initial condition and the boundary
condition.

(Refer Slide Time: 14:51)
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Let us define the following non- dimensional variables
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In terms of the non-dimensional variables, the D.E. and the I.C. and the B.C.s become

0 10(,0 S
at plan " an Rttt
0<n<l, <0, =0 £q.4.2.2.-6
i
=0, 20 ‘5?; £q.422.-7
n=1 >0, 0=1 £ 4228

We cannot apply separation of variables, because for that the BCs need to be homogenous

And we wanted to solve it in terms of non dimensional variables, which we did by defining these

non-dimensional variables

If we use non-dimensional variables defined as

7=at/ R?
Then when we define it and converted transformed the differential equation as well as the initial
and boundary.

®_19 2% 4225

ot nZoml  on (4.225)

D<n<l, T <0, 0=0 (4.2.2-6)
00

n =0, T >0, — =0 (4.2.2-7)
ar

n=1, >0, B=1 (4.2.2-8)

We cannot apply separation of variables to get the solution of the above
differential equation because for that the BCs need to be homogenous. Thus, let
us use the following transformation:

M. t1)=1-6n.17 (4.2.2-9)

(Refer Slide Time: 16:05)
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#'(n,1) = 1-6(n,1) £q.4.2.2.-9 S
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The transformed problem:

d@'_ld Z()H' ——
ol a i
0<y<l, <0, ¢'=1 Eq.422.-11
'
=0, 20, i:o £q.4.2.2.-12
ar
n=1 >0, 6'=0 Eq.422.-13

If we define f = 8'n, then Eq. 4.2.2, - 10 becomes

of o

—=— q.4.2.2.-14
ot oyt .

The transformed problem is

0 1 9( ,00
e Rl (4.22-10)

n° ol odn
O<n<l, <0, B =1 (4.2.2-11)
20"
n=0 T>0, — =0 (4.22-12)
Jar
n=1. >0, B =0 (4.2.2-13)

If we define f = 6, then Eq. 4.2.2-10 becomes

oo (422-14
ot om? ==l

(Refer Slide Time: 16:41)



The solution is

0'= l;—lsin(h)) + %co s(/ln)l exp(=A*1) £q4.2.2.-15
and g= 1+;2”((_1—l;);sin(nnn) exp(= nznzr) £q.4.2.2.-16
10
T
g
@ 01
005 o dos
0 n 10
The solution is
' AL B _
B'=| —sin(An) +—cos(An) [exp(— 227 (4.22-15)
n n
and
= 2(=1)" . )
0= I+Z ————sin(nmm)exp(—n-mT) (4.2.2-16)
n=l n(nm)

The variation of the non-dimensional temperature with non-dimensional distance
at various values of non-dimensional time is given in Fig. 4.2.2-1.

(Refer Slide Time: 17:31)

The T needed for the 1| ..o to reach 99% of T, Is about 0.5
Thus, for steady state condition, € = 0.5, or
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I f3x001y! 5
R={—] = = 0.134em = 1.34 X 10" m
i n
Uy = LSX 10 0 !
Ths, 050134 x 107" o

thyy B e 0
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The T needed for the 7| _, to reach 99 % of T  is about 0.5. Thus, t for steady
state condition = 0.5, or

That happens if you extend this at T = 0.5 and when we substitute the appropriate values we get
the time to read steady state us 6 seconds. This is a decent design and then so, this can be attempted
as what we say that is what we have seen in the case of in the chapter on heat flux when we meet

next this is a review chapter review lecture. When we meet next, let us start looking at charge flux.

So mass, momentum, energy by the way, these 3 are the ones that many engineers look at charge
we need to look at. | will tell you why. And electrical engineers look at nobody else does that. So
we are much more complete biological engineers. Take a much more complete view of systems

because of need. See you then we meet in the next class. Bye.



