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Lecture - 44 

Review of Momentum Flux - Continued 

 

Welcome to the second part of the review of momentum balances, we realize that the review 

itself is just too long and there is no point in having more than about half an hour at a time. 

Even though we go for little long periods, you could always stop whenever you want and then 

come back. Whenever you feel tired, you should do that. That is one of the nice things about 

this mode of learning.  

 

I think you should make full use of it you should start looking at it with a fresh clear mind. Let 

us continue hope we go a little faster, another half an hour, maybe we must be able to get done. 

Otherwise we will do a part 3 of this video. We in the earlier part we reviewed whatever we 

did till this point, which was the shell balances, shell momentum balances, and the derivation 

of the equation of motion, application of the equation of motion, to simplify the analysis that 

was done using shell balances or you could get to insights much quicker.  

 

If you use the equations of motion, subject to certain constraints, you should know where to 

apply it properly. Let us start using the equation of motion to get insights into processes aspects 

that are fundamental to pretty much all aspects of biological engineering. The first one is flow 

through a cylindrical pipe. We started out with this vertical pipe I hope you figured out why 

we looked at a vertical pipe instead of a horizontal pipe I had let you figure that out.  

(Refer Slide Time: 02:07) 



 
The flow of course, has flow through a pipe has various different applications, flow and micro 

devices flow in inside the human body flow of gases and fluids in the bioprocess industry and 

so on so forth. And we said we will consider a laminar flow of a Newtonian fluid and down a 

cylindrical pipe placed vertically. 
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We did we applied the equations of motion to the situation where it is applicable then we got 

some insights that the pressure does not vary with the radius or the pressure does not vary with 

theta and therefore, the pressure across a cross section is same across the length will vary. Then 

we got the velocity profile through quite a bit of derivation please go through this interesting 

to solve if at all you are math oriented. 

 



Otherwise you should know at least how to solve these things. When you have functions of 

ordinary differential equations of 2 different functions on either side they can only be equal if 

they are both equal to the same constant, and using that result from mathematics, then we could 

get to the velocity profile in fluid flow, the velocity profile is this vz, this is vertical flow.  

 

 

So this was the velocity profile and we also looked at the shear stress profile, shear stress profile 

we had looked at first, which turned out to be like this, this is the shear stress scale, this is the 

0 value here. At the center it is 0, the velocity gradient there has to be 0. That is one of the 

boundary conditions by the way, and symmetry boundary conditions called then 0, it reaches a 

maximum linearly in either direction or in any which direction of the radius that you take. 
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So, we also derived the expression for maximum velocity that is just by putting r = 0 the 

velocity maximum velocity is the center. 
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Then we got the average velocity, which turned out to be half the maximum velocity and then 

we got an expression for the flow rate in laminar flow, and this is the famous Hagen – Poiseuille 

equation  



 

So, the flow rate is directly proportional to the pressure drop. 

 

So, these are good insights that we saw of course, it is inversely proportional to µL and so on 

so forth. Typically, we would like to compare for a given situation or depends on your need for 

comparison, this is the relationship you can use this relationship whichever way you want. 

Then we looked at the shear stress and this is the shear stress profile that came later is it? That 

came later I suppose, we got the shear stress profile by looking at the other equation and that 

was a linear shear stress profile.  

 

We had already discussed this and then we looked at the application to capillary flow, the 

capillary flow the only difference was the pressure drop is due to the capillary action the 

adhesive and the cohesive forces, the adhesive forces being much larger between the liquid and 

the solid surface compared to the cohesive forces between the liquid molecules and therefore, 

it gets the liquid arises on its own in a capillary situation. 
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And then we also talked about the penetration velocity which is of interest in these studies, 

which can be found by flow rate divided by 4πr2 and we have an expression for that. And if 

you integrate this penetration velocity is nothing but, dL/dt of the length that has been travelled, 

the penetration length is of importance and studies and that can be obtained by integrating this 

expression.  
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So, that is what we could do. So, the capillary flow in the porous media which is a set of 

interconnected voids of various shapes in a bed of solids that can be modelled as the bed with 

a lot of capillaries in them and you could get the same expression. And this model capillary 

flow in porous media can be used to describe flow across any tissue whole organs and in the 

soil of course, in tissue regeneration and so on so forth. There are various applications the 

application is only limited by our imagination. So, we have some fundamental concept which 

can be applied to various different aspects, that is the power of this course.  
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Then this was the expression that was given as the penetration length which could be helpful. 

Then, we looked at cuvette flow; cuvette flow is the flow between cylinders, concentric 

cylinders the flow happening in the space between the concentric cylinders in the annular space 

between the concentrate cylinders. And the flow is typically a tangential flow and this geometry 

has the advantage of providing very defined shear stresses on cells and so on so forth.  



 

You could use it for that we have used it for that, others have also used it for that we have used 

it to cultivate cells under constant shear stress or a narrow range of shear stress define shear 

stress you could actually calculate the shear stress that the cells are experiencing. And that has 

given us a lot of insights into the behavior of cells. We derived the expression instead of going 

through that let me give you the final expression for the velocity.  
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And we could also get the shear stress profile. Therefore, we have a clear idea as to what the 

cells are experiencing that  

.And as long as that R variation is 1, the shear stress is going to vary over a small range and 

that is very nice for us. Then we also could calculate the torque, we had an expression for that.  

 

Then our next application was I think, we discussed the dimensional analysis using non 

dimensional numbers. We said that, even if you do not have insights into the process you could 

analyze on the basis of dimensions using the Buckingham pi theorem and get beautiful insights 

out of it. 
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Then we had applied the dimensional analysis to a situation that we already know that is a flow 

through a pipe, the relationship between the pressure drop and the other relevant parameters of 

flow and the geometry and so on and so forth. The we got the relationship just by using we got 

the form of the relationship just by using or just by analyzing the dimensions of the various 

things using the Buckingham pi theorem. 

 

And of course, methodology that was shown and as said that the methodology has steps which 

have proven by practice there is no mathematical proof for them, it has been proven by practice, 

it works most of the time or at least has worked in all cases that I have seen so far. So, that was 



what is illustrated to you, I think I will not take too much time on that you can go and use this. 

So, I was taking you from a very rigorous view to a completely.  

 

You know, completely an approach that was based on experience macroscopic aspects and so 

on so forth. That is the dimensional analysis part of it, which also can give us this and then we 

switch back to that approach of getting insights, then we realized the mathematics can be quite 

daunting in certain cases, you could use numerical methods to solve such equations. However, 

those could also those are also not very easy to do in certain situations. 

 

There are a different set of challenges that you need to overcome in a numerical solution. And 

when it is going to be used for design and operation alone, there are methods that are based on 

macroscopic aspects that work well. So, this was the dimensional analysis then we looked at 

unsteady state case and steady state flow, where the fluid is addressed initially and then you 

start the flow and you are interested in the time from the start to the time when steady state is 

achieved.  

 

So, that is unsteady state and then we also looked at Poiseuille flow; then, before we get into 

the macroscopic aspects; we looked at turbulent flow at least a way to approach analysis of 

turbulent flow in a reasonably based on a reasonably fundamental approach and then we started 

making assumptions there when things got a little too tight.  
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So we said we could express the velocity in the turbulent flow at any place as a sum of a time 

smooth component and fluctuating component or an average component and a fluctuating 



component. If you do that, then all we need to do is, of course there are some videos that were 

given and so on and so forth. All we needed to do was to replace the velocity I have shown it 

to you in this case, I think, briefly replace we talked about Reynolds stresses.  
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The velocity by an average velocity the equations of continuity equations of motion I mean the 

velocity replaced by the average velocity the pressure replaced by an average pressure and the 

shear stress you replace by a laminar component or the stress you replaced by a laminar 

component and a turbulent component sum, then the fundamental equations can be used to the 

extent possible. 
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Then we said even that could get a little difficult so, people have used other means of getting 

some handle on the turbulent flow. So, one of the formulations is similar to Newton’s law of 

viscosity, although this is not the Newton’s law of viscosity because this is not molecular 



viscosity this is eddy viscosity which could be 100s of times the molecular viscosity, but this 

form seems to help, another form that is given by Prandtl was also shown as this  
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So, this was shown and of course, the Deissler’s empirical formulations were also given in 

terms of your v+ and s+ which are non dimensional quantities. So, all this you have to get an 

idea as to the quantitative velocities shear stresses velocities in this case in turbulent flow in 

this case pipe flow. So, this is 1 and then we introduced the engineering Bernoulli equation and 

showed its applications to various practical situations.  

 

So, engineering Bernoulli equation, although engineering Bernoulli equation is can be derived 

from basic momentum balance The applications over cross sections and so on so forth help us 

to get a lot of design aspects in a rather straightforward fashion easy fashion compared to and 

an in depth understanding and nothing beats an in depth understanding because there if you 

understand it in depth, the generality of application is so wide. So, always the aim of engineers 



is to go deeper and deeper and understand things better and better thereby improving the 

generality of applications for you know immediate applications.  
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Some immediate applications such as this piping network before that the engineering Bernoulli 

equation was  

 

We add the friction losses per unit mass and this shaft work by unit mass, you get the 

engineering but not the equation. And we looked at the applications of this; we also said that 

we will look for a friction factor as it is called a friction factor.  

 

That we defined in a certain way this is the shear stress versus the other stress, or the first by 

force kinetic force by unit area divided by the kinetic energy per unit volume. That is the way 

we define our friction factor.  



 

 

This was the frictional loss per unit mass in a straight pipe this we actually derived and then 

this hydraulic radius which is cross sectional area divided by the wetted perimeter allowed us 

this formulation allowed us to extend the results to non-circular geometries. That way it is a 

simple formulation that is a powerful formulation. 
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(Refer Slide Time: 20:19) 



 
Then, we saw how we could get the value of friction factor through this fanning friction chart 

as it is called there is also a Moody’s friction factor chart, Moody’s chart as it is called. There 

is a slight difference the value of f a slightly different between the fanning friction factor and 

Moody’s friction factor chart. However, let us not get into that, this is the fanning friction factor 

chart.  

 

You need the Reynolds number and the roughness factor if at all is in turbulent flow to get the 

friction factor, if it is in laminar flow, all you need is 16 / NRe, you will get the friction factor. 

So you have this and we saw applications this is engineering Bernoulli equation itself and we 

saw the applications to a piping network. 
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Here this piping network was analyzed to get the pumping power as well as the pressure drop 

both these design aspects were obtained by using or applying the engineering Bernoulli 



equation to this piping network. And since we are running short of time, let me quickly show 

you the various things I am not going to work out the problem I mean I had used I post this as 

a problem so that you could understand this better anyway we had worked out the problem 

please go and look at it. If you need to understand it further. 
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Then we looked at the application to a stenosis situations artery stenosis situation where 

interestingly, we could find the pressure at which cavitation would occur or the condition, the 

pressure gauge pressure at which the cavitation could occur we could use engineering Bernoulli 

equation to get in get that value. Then, we looked at the application of friction factor in the case 

where there is a relative motion between a solid and a fluid solid and a liquid at the same, let 

us say a body dropping through a liquid.  
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And then finally, we looked at the application of an engineering Bernoulli equation to find the 

friction factor for packed beds, once we found the friction factor for packed beds, we had done 

it over a couple of classes ultimately.  
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And then we could using the various geometric arguments, we could come up with the Ergun 

equation and the Kozeny-Carman equation under different conditions of flow. And also this 

equation can be used to predict pressure drop across the beds as well as the pumping 

requirements across the beds. So, this is what we did, we spanned a wide spectrum here, starting 

from fundamental aspects to very useful aspects for design and operation.  

 

I think we will stop here in this class and when we start up again. In the next class, we will start 

looking at the next conserved quantity the flux of the next conserved quantity, which happens 

to be heat energy, see you. 


