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Lecture - 44
Review of Momentum Flux - Continued
Welcome to the second part of the review of momentum balances, we realize that the review
itself is just too long and there is no point in having more than about half an hour at a time.
Even though we go for little long periods, you could always stop whenever you want and then
come back. Whenever you feel tired, you should do that. That is one of the nice things about

this mode of learning.

I think you should make full use of it you should start looking at it with a fresh clear mind. Let
us continue hope we go a little faster, another half an hour, maybe we must be able to get done.
Otherwise we will do a part 3 of this video. We in the earlier part we reviewed whatever we
did till this point, which was the shell balances, shell momentum balances, and the derivation
of the equation of motion, application of the equation of motion, to simplify the analysis that
was done using shell balances or you could get to insights much quicker.

If you use the equations of motion, subject to certain constraints, you should know where to
apply it properly. Let us start using the equation of motion to get insights into processes aspects
that are fundamental to pretty much all aspects of biological engineering. The first one is flow
through a cylindrical pipe. We started out with this vertical pipe | hope you figured out why
we looked at a vertical pipe instead of a horizontal pipe | had let you figure that out.
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The analysis has significance in a variety of situations
* flow in a micro-devices

* flow of body fluids in the human body, at least as a first approximation -
* flow of liquids and gases in the bio-process industry
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Let us consider:
laminar flow of a Newtonian fluid
down a cylindrical pipe placed vertical

Let us consider the situation when the flow is well-developed, i.e. the axial velocity at any particular radial position
in the pipe is not dependent on the length, v, # f(z)

Let us derive the profiles of shear rates and velocities across the tube diameter

The flow of course, has flow through a pipe has various different applications, flow and micro
devices flow in inside the human body flow of gases and fluids in the bioprocess industry and
so on so forth. And we said we will consider a laminar flow of a Newtonian fluid and down a
cylindrical pipe placed vertically.
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A b Thus the velocity profile is parabolic across the diameter
shear stress scale
| Note that AP = P, — P,; typically, for the flow to occur, P, < P,
2=l b e Thus {-AP} is positive

We did we applied the equations of motion to the situation where it is applicable then we got
some insights that the pressure does not vary with the radius or the pressure does not vary with
theta and therefore, the pressure across a cross section is same across the length will vary. Then
we got the velocity profile through quite a bit of derivation please go through this interesting

to solve if at all you are math oriented.



Otherwise you should know at least how to solve these things. When you have functions of
ordinary differential equations of 2 different functions on either side they can only be equal if
they are both equal to the same constant, and using that result from mathematics, then we could
get to the velocity profile in fluid flow, the velocity profile is this v, this is vertical flow.

At r = 0, C, must be equal to 0.

Therefore
v. APr
LAE (3.4.2-13)
dr  2uL
Integrating this, we get
2
v =2 e (3.4.2-14)
4u L
Now, using the BC that at r = R, v = 0 (‘no slip boundary condition”)
_ AP R?
C‘g = —
) 4u L
Thus
AP, o (APR| . ()
. = (r2 —R%) = S i J (3.4.2-135)
4u L 4ul \R

So this was the velocity profile and we also looked at the shear stress profile, shear stress profile
we had looked at first, which turned out to be like this, this is the shear stress scale, this is the
0 value here. At the center it is 0, the velocity gradient there has to be 0. That is one of the
boundary conditions by the way, and symmetry boundary conditions called then 0, it reaches a
maximum linearly in either direction or in any which direction of the radius that you take.
(Refer Slide Time: 05:12)
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The volumetric flow rate, Q= area x v, 4,

SRR 5 RY(-0P £9.342.-18
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Hagen- Poiseuille (pronounced as Pwah- 200- yuh) equation

Note: Q  a(-AP)
aR?

If the radius is doubled at the same (-AP), the volumetric flow rate increases 16-fold

So, we also derived the expression for maximum velocity that is just by putting r = 0 the
velocity maximum velocity is the center.
(Refer Slide Time: 05:26)
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The volumetric flow rate, Q = area x v, 4,
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Hagen- Poiseuille {pronounced as Pwah- z00- yuh) equation

Note: Q a(-AP)
af!

If the radius is doubled at the same (-AP), the volumetric flow rate increases 16-fold

Then we got the average velocity, which turned out to be half the maximum velocity and then
we got an expression for the flow rate in laminar flow, and this is the famous Hagen — Poiseuille

equation



The volumetric flow rate, Q = Area x v__ . Thus

_TR*X(-AP)R* 1
sul suL

Q R*(—AP) (3.4.2-18)

Thus

QO o (- AP)
o R*

If the radius is doubled at the same (— AP), the volumetric flow rate
increases 16-fold.

So, the flow rate is directly proportional to the pressure drop.

So, these are good insights that we saw of course, it is inversely proportional to uL and so on
so forth. Typically, we would like to compare for a given situation or depends on your need for
comparison, this is the relationship you can use this relationship whichever way you want.
Then we looked at the shear stress and this is the shear stress profile that came later is it? That
came later | suppose, we got the shear stress profile by looking at the other equation and that

was a linear shear stress profile.

We had already discussed this and then we looked at the application to capillary flow, the
capillary flow the only difference was the pressure drop is due to the capillary action the
adhesive and the cohesive forces, the adhesive forces being much larger between the liquid and
the solid surface compared to the cohesive forces between the liquid molecules and therefore,
it gets the liquid arises on its own in a capillary situation.

(Refer Slide Time: 07:25)

%
& 9

=
e '
-

Cohesion results in a force that is usually represented as a force per unit length, or surface tension, y
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The capillary pressure due to surface tension at that point, or the meniscus, in a capillary of radius, r, is given by
the appropriate simplification of the Young-Laplace equation (For the derivation, see Berg JC. 2009. Introduction
to Interfaces and Colloids. World Scientific)

2y
P = —cost £9.3421.-1

where # is the contact angle (wetting angle) between the liquid and the capillary wall

Note: this pressure is inversely proportional to the radius of the duct

This pressure becomes predominant in capillaries, and provides the "driving force’ for the bulk flow of the
liquid through the capillary, even if other ‘driving forces’ are absent

When other ‘driving forces’ such as those provided by a liquid column, or an external pump are present,
the pressures can be added to get the total pressure difference for the flow (- AP).

To obtain the flow rate in pure capillary flow (when no other ‘driving forces’ for the flow are present) we can use
the Hagen- Poiseuille relationship, Eq. 3.4.2.- 18

o L ‘9-”‘39 Eq.3421.-2
O_Bqu . cosf = 4llL, cos q.34.2.1.



0 :L,-‘*[ﬂ]cose = 3050 (3.4.2.1-2)
r 4ul

Since the flow rate is a product of the cross-sectional area and the penetration
velocity, the penetration velocity v ) can be obtained by dividing the above
equation by the cross-sectional area 72

dL

v, === rcos (3.4.2.1-3)

dt 4ulL
In microfluidic situations, the above equation can be integrated to get the
position of the liquid front along the capillary as a function of time.
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The above equation can be integrated to get the position of the liquid front along the capillary as a
function of time, in microfluidic situations

And then we also talked about the penetration velocity which is of interest in these studies,
which can be found by flow rate divided by 4nr? and we have an expression for that. And if
you integrate this penetration velocity is nothing but, dL/dt of the length that has been travelled,
the penetration length is of importance and studies and that can be obtained by integrating this
expression.

(Refer Slide Time: 08:21)
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Porous media is a term that refers to any medium that has a solid matrix with interconnected interstitial spaces, L §
" . \
through which there is movement of some species of interest. -
For example, soil is a porous medium through which water, pollutants, fines, etc., can travel. NPTEL

Sometimes, the interstitial spaces are considered as a set of capillary tubes, and thus capillary flow through
porous media is an area with wide applications.

Many substances of biological interest can be considered as porous media.

- Any tissue, including whole organs such as liver, kidney, heart, brain, etc., can be treated as porous media because
they contain cells that are dispersed, and connected voids through which nutrients, drugs and other substances travel
to reach the cells.

- Tissue regeneration, which is used to grow artificial organs, typically happens on a scaffold, and this system can be
considered a porous medium.

- The biological pollution treatment system such as the trickling filter, or the matrix in which cells immobilized in a type
of bioreactor, can be treated as porous media.

So, that is what we could do. So, the capillary flow in the porous media which is a set of
interconnected voids of various shapes in a bed of solids that can be modelled as the bed with
a lot of capillaries in them and you could get the same expression. And this model capillary
flow in porous media can be used to describe flow across any tissue whole organs and in the
soil of course, in tissue regeneration and so on so forth. There are various applications the
application is only limited by our imagination. So, we have some fundamental concept which
can be applied to various different aspects, that is the power of this course.

(Refer Slide Time: 09:16)
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To obtain the kinetics of liquid movement by capillary flow into a porous medium, typically, the medium Is treated as
consisting of cylindrical capillary tubes.
Then, the distance penetrated by the liquid into the porous medium, L, can be obtained by the integration of

the Eq. 34.2.1.- 3 NPTEL
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Then this was the expression that was given as the penetration length which could be helpful.
Then, we looked at cuvette flow; cuvette flow is the flow between cylinders, concentric
cylinders the flow happening in the space between the concentric cylinders in the annular space
between the concentrate cylinders. And the flow is typically a tangential flow and this geometry
has the advantage of providing very defined shear stresses on cells and so on so forth.



You could use it for that we have used it for that, others have also used it for that we have used
it to cultivate cells under constant shear stress or a narrow range of shear stress define shear
stress you could actually calculate the shear stress that the cells are experiencing. And that has
given us a lot of insights into the behavior of cells. We derived the expression instead of going
through that let me give you the final expression for the velocity.

(Refer Slide Time: 10:36)
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And we could also get the shear stress profile. Therefore, we have a clear idea as to what the
cells are experiencing that

[ k? 1
T',.e - — 2|U'QOR ﬁ f—z (343-5)

JAnd as long as that R variation is 1, the shear stress is going to vary over a small range and

that is very nice for us. Then we also could calculate the torque, we had an expression for that.

Then our next application was | think, we discussed the dimensional analysis using non
dimensional numbers. We said that, even if you do not have insights into the process you could
analyze on the basis of dimensions using the Buckingham pi theorem and get beautiful insights

out of it.

(Refer Slide Time: 12:15;
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Let us apply this method to a situation that we have already seen, to get an expression for
pressure drop, 8p, is a straight pipe

=
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Then we had applied the dimensional analysis to a situation that we already know that is a flow
through a pipe, the relationship between the pressure drop and the other relevant parameters of
flow and the geometry and so on and so forth. The we got the relationship just by using we got
the form of the relationship just by using or just by analyzing the dimensions of the various

things using the Buckingham pi theorem.

And of course, methodology that was shown and as said that the methodology has steps which
have proven by practice there is no mathematical proof for them, it has been proven by practice,

it works most of the time or at least has worked in all cases that | have seen so far. So, that was



what is illustrated to you, I think 1 will not take too much time on that you can go and use this.

So, | was taking you from a very rigorous view to a completely.

You know, completely an approach that was based on experience macroscopic aspects and so
on so forth. That is the dimensional analysis part of it, which also can give us this and then we
switch back to that approach of getting insights, then we realized the mathematics can be quite
daunting in certain cases, you could use numerical methods to solve such equations. However,

those could also those are also not very easy to do in certain situations.

There are a different set of challenges that you need to overcome in a numerical solution. And
when it is going to be used for design and operation alone, there are methods that are based on
macroscopic aspects that work well. So, this was the dimensional analysis then we looked at
unsteady state case and steady state flow, where the fluid is addressed initially and then you
start the flow and you are interested in the time from the start to the time when steady state is

achieved.

So, that is unsteady state and then we also looked at Poiseuille flow; then, before we get into
the macroscopic aspects; we looked at turbulent flow at least a way to approach analysis of
turbulent flow in a reasonably based on a reasonably fundamental approach and then we started
making assumptions there when things got a little too tight.

(Refer Slide Time: 15:10)
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The velocity 1, at any point in turbulent flow can be expressed as
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v; 15 a fluctuating component

We will better understand the above formulation, soon

Through careful experimental measurements, it has been shown that for turbulent flow in a pipe

TURBULENT LAMINAR

I: |‘;j :Il—[h.)“ £.38.-1
1
= £q.38.-2

AP 0 xQ fq.38.-3

So we said we could express the velocity in the turbulent flow at any place as a sum of a time

smooth component and fluctuating component or an average component and a fluctuating



component. If you do that, then all we need to do is, of course there are some videos that were

given and so on and so forth. All we needed to do was to replace the velocity | have shown it

to you in this case, I think, briefly replace we talked about Reynolds stresses.
(Refer Slide Time: 15:55)
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Note, equations 3.8. -9 to 14 are valid for an incompressible flow
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On the same lines, it can be shown that the equations/tables for laminar flow are valid for turbulent flow if we replace

v by
p by p

nj by f,-‘.‘;' + f_‘,‘l

The velocity by an average velocity the equations of continuity equations of motion I mean the

velocity replaced by the average velocity the pressure replaced by an average pressure and the

shear stress you replace by a laminar component or the stress you replaced by a laminar

component and a turbulent component sum, then the fundamental equations can be used to the

extent possible.
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Based on a large number of experimental studies, relevant expressions have been proposed. Let us consider two
common expressions

On the same lines as for the laminar case,

o

Eq.38.-15
dy )

fy ) =y
¥ = "eddy viscosity’; value could be 100s of times the molecular viscosity

The second is a popular formulation was by Prandt!
It was assumed that the eddies in the fluid move around in a fashion similar to that of the molecules in a gas
A ‘mixing length’, |, which is a function of position represents an idea similar to the ‘mean free path'’ in the
kinetic theory of gases

v, | s,

Then we said even that could get a little difficult so, people have used other means of getting

some handle on the turbulent flow. So, one of the formulations is similar to Newton’s law of

viscosity, although this is not the Newton’s law of viscosity because this is not molecular



viscosity this is eddy viscosity which could be 100s of times the molecular viscosity, but this

form seems to help, another form that is given by Prandtl was also shown as this

For laminar flow, we had a theoretical base in terms of constitutive
equations. For turbulent flow, we do not have that luxury. Nevertheless,
many expressions based on experimental observations have been proposed.
Two are given below.

The first is on the same lines as for the laminar case.

(r) d ‘_\

=) _
T_\'_\' = U dv

(3.8-15)

where u® is termed as ‘eddy viscosity” and its value could be hundreds of
times the molecular viscosity.

(Refer Slide Time: 17:14)
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For flow in pipes/tubes, the velocity profile in turbulent flow can be obtained through Deissler’s empirical formulation:
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s=R-r i.e.the radial distance from the wal
1, = wall shear stress at s = 0

1
Fors® > 26, pt = — Ins* +3 £q.38.-17
v 036 Ins* +38 : q

For0 <s™ <5, o S Eq.38.-18

For0 < s* <26 .-~=J "% £q.38.-19
b 1+n2vtst(1-exp{-n?v*st))

So, this was shown and of course, the Deissler’s empirical formulations were also given in
terms of your v* and s* which are non dimensional quantities. So, all this you have to get an
idea as to the quantitative velocities shear stresses velocities in this case in turbulent flow in
this case pipe flow. So, this is 1 and then we introduced the engineering Bernoulli equation and

showed its applications to various practical situations.

So, engineering Bernoulli equation, although engineering Bernoulli equation is can be derived
from basic momentum balance The applications over cross sections and so on so forth help us
to get a lot of design aspects in a rather straightforward fashion easy fashion compared to and
an in depth understanding and nothing beats an in depth understanding because there if you

understand it in depth, the generality of application is so wide. So, always the aim of engineers



is to go deeper and deeper and understand things better and better thereby improving the
generality of applications for you know immediate applications.

(Refer Slide Time: 18:41)

Thus far, the understanding of fluid flow was in good depth
But, the mathematical effort was significant
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The Engineering Bernoulli equation can be derived by starting at the equation of motion, Eg. 3.4.-4.
Outlines of the derivation are given in the textbook, and a more detailed derivation is available in Bird et al. (2002)

Interested students are encouraged to see the details

Here, we will merely state the Engineering Bernoulli equation and start using it to solve problems

bp A p——.
+7+gAz~fL+MQ:0 £q.39.-5

p

- o 1
FL = frictional losses per unit mass W, = shaft work done per unit mass = — W,
m

We will also use the friction factor approach - there are different friction factors for different situations
For design and operation, the friction factor approach would be the easiest, with an acceptable balance

between rigour and the ease of usability

Some immediate applications such as this piping network before that the engineering Bernoulli

equation was

' 2
A A +gAc+FL+W, =0 (3.9-5)
P
where
FL=—1[z:97)av
m
— 1
W\. = —_W‘
m

Equation 3.9-5 is a useful form of the engineering Bernoulli equation.
We add the friction losses per unit mass and this shaft work by unit mass, you get the
engineering but not the equation. And we looked at the applications of this; we also said that

we will look for a friction factor as it is called a friction factor.

That we defined in a certain way this is the shear stress versus the other stress, or the first by

force kinetic force by unit area divided by the kinetic energy per unit volume. That is the way

we define our friction factor.
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Ffo_\2 :4‘}6(5)(&} (3.9.1-8)
pD D 2

This FL accounts for frictional losses at the pipe wall (skin friction).

Equation 3.9.1-8 can be written as

2
— V.
4%

4

This was the frictional loss per unit mass in a straight pipe this we actually derived and then

this hydraulic radius which is cross sectional area divided by the wetted perimeter allowed us

this formulation allowed us to extend the results to non-circular geometries. That way it is a

simple formulation that is a powerful formulation.

(Refer Slide Time: 19:52)
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FL accounts for skin friction, i.e. frictional losses at the pipe wall

We can write equation 3.9.1.-8 as:

Let us define a ‘hydraulic radius’, r,, as

cross — sectional area

Ty = ———
H wetted perimeter

(Refer Slide Time: 20:19)
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For the laminar regions, we can use f = =
Re

For the turbulent regime, we need to use the chart
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For the intermediate regime (2100 < N, < 4000) we
usually avoid design

friction factor. f

0.001
16402 16403 16404 16405  1E+06  1E407

Reynolds number, N,

In the turbulent regime, the friction factor, f is a function of the roughness factor, k/D

Then, we saw how we could get the value of friction factor through this fanning friction chart
as it is called there is also a Moody’s friction factor chart, Moody’s chart as it is called. There
is a slight difference the value of f a slightly different between the fanning friction factor and
Moody’s friction factor chart. However, let us not get into that, this is the fanning friction factor

chart.

You need the Reynolds number and the roughness factor if at all is in turbulent flow to get the
friction factor, if it is in laminar flow, all you need is 16 / Nre, You will get the friction factor.
So you have this and we saw applications this is engineering Bernoulli equation itself and we

saw the applications to a piping network.

(Refer Slide Time: 21:13;

Adleaning liquid used in many Bioprocess industries needs to be piped through the
pipefine system above the ground as shown in the figure.
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— The pipeline system consists of 50 m of 12” nominal diameter pipe and 20 m of 8”
nominal diameter pipe. All elbows are standard and fianged and the material used for
the piping is schedule 80 wrought iron pipe. Determine the pressure drop needed
befween points 1 and 2 fo maintain a fow rate of 0.05 m*s™". What is the pumping
power thatis needed to maintain the flow rate? The density of the liquid is 870 kg m
and its viscosity is 1.375x10°Pas)

Schedule 80 pipes:

For 2 12" nominal diameter
4,=02889m

Fora 8" nominal diameter
401937 m

for wrought ion,
roughness factor (k)= 46X 10° m

Here this piping network was analyzed to get the pumping power as well as the pressure drop

both these design aspects were obtained by using or applying the engineering Bernoulli



equation to this piping network. And since we are running short of time, let me quickly show
you the various things | am not going to work out the problem | mean | had used | post this as
a problem so that you could understand this better anyway we had worked out the problem
please go and look at it. If you need to understand it further.
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The solution provides the condition in terms of A,/A, for cavitation to occur

P 2 [ {2
04+ M-ﬂxux(u.tx:—) 044 \]]ha"\ﬂ[T:'——l)
A { . \ Py
n 2x14 - 28
(04: um»:o(éll-l')
A PV varg
If =2 L T e | P2 S 0, and cavitation will occur
A 28 .

Then we looked at the application to a stenosis situations artery stenosis situation where
interestingly, we could find the pressure at which cavitation would occur or the condition, the
pressure gauge pressure at which the cavitation could occur we could use engineering Bernoulli
equation to get in get that value. Then, we looked at the application of friction factor in the case
where there is a relative motion between a solid and a fluid solid and a liquid at the same, let
us say a body dropping through a liquid.
(Refer Slide Tie 22:38)
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The projected area of the sphere: 4, = 7R* = =
Terminal veloclty: ¥, = v

Density of the particle: ,

Density of the fluid: p

Aforce balance on the particle under these conditions gives

r.:({vn‘),wf';w )oy £0.392.-2

1
From Eq,39.2 - 1 we get ke lwl!')l—‘,\x':)(

Equating the above two expressions, we can get an expression for the friction factor fo this case:

£9.392.-3
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And then finally, we looked at the application of an engineering Bernoulli equation to find the
friction factor for packed beds, once we found the friction factor for packed beds, we had done
it over a couple of classes ultimately.
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And then we could using the various geometric arguments, we could ome up with the Ergun
equation and the Kozeny-Carman equation under different conditions of flow. And also this
equation can be used to predict pressure drop across the beds as well as the pumping
requirements across the beds. So, this is what we did, we spanned a wide spectrum here, starting

from fundamental aspects to very useful aspects for design and operation.

I think we will stop here in this class and when we start up again. In the next class, we will start
looking at the next conserved quantity the flux of the next conserved quantity, which happens

to be heat energy, see you.



