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Lecture - 43
Review of Momentum Flux
Welcome back in the previous lecture, we completed the chapter on momentum flux, as we
have been doing so far in the course, let us do a quick review of whatever we have done in the
chapter on momentum flux, before we move forward, that would help you consolidate the
information, the understanding, improve the understanding at this level, understanding at

various levels of depth goes on and on for very many years.

So, this is at this level that we are talking about for all that this becomes helpful. And it is also
nice to have everything in one place where you can go and refer to once you reach a certain
level of understanding, let us begin we looked at started looking at momentum flux a while ago
few weeks ago.
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We know that a fluid (either 2 gas or a liquid)
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is a substance that takes the shape of the vessel containing it A\
Al real fluids have a property called viscosity o

’
n 4
=y,

=z
-
—
-

To understand momentum flux, let us consider the following idealized scenario:
Two parallel flat plates with a thin layer of fluid (say water) in between them
The bottom plate is carefully moved in the x direction with a reasonably small velocity, v,

The bottom most liquid layer adhering to the plate
will move with the same velocity as that of the plate —_—

l
The shear stress due to the shear force exerted by the — wly)
bottom-most layer of fluid, influences the velocity of _—

the fluid layer above it

The shear stress exerted by the layer above the bottom )
most layer, influences the velocity of the layer above it, X
and so on.

Tyx

action «

* motion - impiistic view for initial understanding ’
. L

We said that fluids or this becomes highly relevant in a flﬁid system. Of course, momentum is
there even in the particles and so on and so forth that you are very comfortable with so far. We
started out by looking at the flow in a thin layer of fluid between 2 flat planes when the bottom
plane is moved with a small velocity of v in the positive x direction. Then we talked about the

effect of this movement in the perpendicular direction being caused by a shear stress tyx.



The first subscript is the direction of the gradient, that is y in this case or the direction of action,
as | called it, and x is the direction of motion, the direction of velocity. So, the direction of
velocity, the direction of velocity gradient and that is what we use to identify the various shear
stresses, as we called it. Then, and | also said that this is a simplistic view for an initial
understanding, later on we found in a 3 dimensional case where multiple velocity gradients
contributed to the same shear stress.

(Refer Slide Time: 02:42)
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Shear (or normal) stress, is force per unit area
That force is rate of momentum change (from Newton's second law)

TR force _ MLT™2 _ [M(LT~Y)|T!
rx area 12 »
Rate of momentum change

.

area

=momentum flux

And, we also looked at how a shear stress can be interpreted as momentum flux, the rate of
momentum change per area. | had shown it to you from dimensions point of view that would
give you an idea therefore, we have brought it in the context of a flux, which has been a
common theme across various aspects in this course.

(Refer Slide Time: 03:09)
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The relationship between the shear stress, 7, and a ‘shear rate’, or velocity gradient, =
dy

/

was experimentally observed by Isaac Newton as:

=
'Ul
- b
m
=

dv,
r'\.,=“_d—y £g.3.1.-1

Wis viscosity, a fundamental material property

£q.3.1.- Lis called the Newton’s law of viscosity

Itis a constitutive equation like the Fick's | law

Flux is proportional to the gradient of its primary driving force. The velocity gradient is the primary driving force
in the case of momentum flux

Dimensionally, the shear stress (force per unit area) can be written as

MeT? (ﬂ)(@)

2 L L

Thus, the dimensions of viscosity are ML'T




Then we talked about Newtonian fluids, which have this kind of relationship given by Newton
based on his experiments, the shear stress is directly proportional to the shear rate or the
velocity gradient, the negative of it and the constant of proportionality is called the viscosity.
It is also called the Newtonian viscosity at times, the negative you know how that comes about,

because we typically take (vz2 - vilyz - y1).

However, this would be proportional to vi - v2 therefore, you have a negative thing that is
coming in here and viscosity is a fundamental material property. Also the Newton’s law of
viscosity is a constitutive equation similar to the Fick’s first law of motion in mass flux. The
also we saw the units of viscosity the dimensions of viscosity are M L™ T, | showed you a
way to work out such things from the basal relationships when you know the dimensions of the
other quantities. Then, we looked at the rheological properties; let me go directly to a more
comprehensive figure.

(Refer Slide Time: 04:30)

, &
2.4
h

= 3
Y, i
7T

The viscosities of Newtonian fluid and Bingham plastic are independent of shear rate
Some fluid viscosities are dependent on shear rates
The fiuid will either become easier to flow, or more difficult to flow, with an increase in the shear rate

iy,

=
U,y
—

Pseudoplastic and dilatant fluids are known as Power law fluids
because the variation of a particular, ‘apparent viscosity’ with
Dilatant shear rate, can be expressed as a power law

Bingham plastic

n-1
d dv,
Te=-ml— —= £9.31.-3
dy dy
— The apparent viscosity, gy, is given as
Newtonian Y Hapy
g
/ n-1
/ dv, \
Happ =m [— Eq.31.-4
o} R PP dy
i [ Stic a
- seudoplastic m and n are parameters that are dependent on the fluid
“ 5 1f n =1, the fluid is Newtonian and m=y1 (Newtonian viscosity)

1 dv, ) If n <1, the fluid is shear-thinning or pseudoplastic

= oy If n > 1, the fluid is shear-thickening or dilatant

Video: These People Are Walking on Water Video: Why is ketch-up <0 hard to pour?
ww.youtube.com/watch?v=g-020f0 tps:/ /www.youtube.com/watchv=KB4

This is the Newtonian fluid which is directly in this the rheological characterization, shear rate
versus the shear sorry, shear stress versus the shear rate or the velocity gradient negative of

dvy/ dy. For a Newtonian fluid you have a straight line that passes through the origin the slope
is the viscosity for a Bingham plastic which does not move till threshold shear stress is applied

tau 0, the behavior is something like this it does not pass through the origin.

Then we also saw a pseudo plastic fluid which is a shear thinning fluid as the velocity gradient
increases, the viscosity decreases or it becomes easier to let us say stir the pseudo plastic fluid
and this is the dilatant fluid is just the opposite, where the viscosity increases with shear rate;



here the slope increases with shear rate therefore, the viscosity increases with shear rate and it

becomes harder to cause the velocity or to move around or to even stir the fluid.

An example of this is your paint the paint that you use, you stir faster it becomes easier to stir.
This an example of this is quicksand the faster you move, the more difficult it gets to move,
this is pseudo plastic this is dilatant then we looked at the various expressions the Bingham
plastic was a shear, a threshold shear stress plus at Newtonian part that we saw for the pseudo
plastic and the dilatant you could use a power law, where the shear stress is given as a certain
m(dvx/ dy )",

It is velocity gradient dependent viscosity and you take the minus with this if as we normally
do -dvx/ dy. Here if this term is called the apparent viscosity, m (dvy/ dy)" %, m and n are
parameters dependent on the fluid. If n = 1, this 1 disappears and therefore, you have a
Newtonian fluid and m of course becomes Newtonian viscosity. If n is less than 1, the fluid is

shear thinning or pseudo plastic.

And n less than 1 this is this becomes a negative the index here the exponent here becomes
negative and therefore, the fluid pseudo plastic fluid is shear thinning. If n is greater than 1, the
exponent is greater than 1 and therefore, the fluid the shear thickening or dilatant.

(Refer Slide Time: 07:24)
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Some fluids show time-dependent behaviour
The shear stress depends on the shear rate (viscous) as well as on the strain (elastic or Hookean)
A common constitutive equation to describe viscoelastic fluids, is the Maxwell model
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oy, dr.)
Tyt = |- £g.31.-5
76 ot ( dy 2

G is the shear elastic modulus (Nm?)

The synovial fluid lubricates joints in the human body. It shows viscoelastic behaviour
It consisting of proteins; hyaluronic acid is the most important protein in the synovial fluid
Mucus and vitreous fluid in the eye exhibit viscoelastic behaviour

Videos.
Introduction to Viscoelasticity: https://www.youtube com/watch?v-=52IH9pidAd .
Fluid Dynamics: Non-Newtonian Fluids: hrtps://www.youtube com/watchv=YyvqdfHtams

Then I give you a few videos and we also said there are other types of fluids that are biologically
relevant, which show a time dependent behavior, those are called viscoelastic fluids, and this
is the equation that governs viscoelastic fluids. Examples are synovial fluid, the hyaluronic



acid in the synovial fluid, hyaluronic acid in other parts of the body, the vitreous humor and so

on and so forth. They are all good examples of solutions which show this behavior.

(Refer Slide Time: 08:03)
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Blood is an important biological fluid. It is complex. $< i( \E
It consists of plasma, which is a mixture of liquids, proteins, and cells such as erythrocytes, leukocytes and others. §\ I8N §
S

Blood behaves partially as a Bingham plastic, i.e. it exhibits a yield stress, and behaves partially as a viscoelastic fluid X §
The complex rheological behaviour of blood also arises from the ‘clumping” of erythrocytes {red blood cells) due to N P‘T‘_E L

fibrinogen on their surface, apart from the complex composition of blood.

Blood rheology is an entire field in its own right

The Casson model can be used to describe blood rheology:

1/2
—dv,

dy

M2 =g 12 2 £6.31.-6

7, is the yield stress

The yield stress depends on the volume fraction of erythrocytes in the blood
The volume fraction of erythrocytes in blood is usually called the *hematocrit’ (typical value: 0.4)

At lower shear rates, say < 20 s, blood shows complex behaviour (Eq. 3.1 - 6 is needed)
At higher shear rates, say > 100 s, blood can be assumed well to behave as a Newtonian fluid

Video: Whole blood viscosity: links to cardiovascular disease
https://www.youtube.com/watch?v=sWfCKdidl.c0

Some videos and then we briefly looked at blood, very complex fluid. Typically, you could use
the Casson model for a first approximation. Of course, blood rheology is a discipline in its own,
you have books written on blood rheology, some link between blood viscosity and
cardiovascular disease is given in this video nice video if you could watch that.

(Refer Slide Time: 08:34)
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The way we understand the fluid dynamics depends a lot on the type o flow experienced by the fluid Vi §
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There are two types of flow NPTEL

1. Laminar (flow in layers, corresponding to the geometry - flat, cylindrical, etc.)
2. Turbulent (flow when pockets of fluid tumble over each other during flow)

Reynolds’ flow visualization experiment (1883) Video: Reynolds Apparatus (Vertical Mode)
https://www.youtube.com/watch ?v=xiX5PfFxmis

Reynolds number, a non-dimensional number, can be used to predict whether the flow will be laminar or turbulent

_pwd

Ny =22 £9.32.-1
p= density of the fluid -
v= velocity of the fluid In pipe fiow (and only in pipe flow] the following numbers hold
d= pipe diameter N,, <2100 Laminar flow
W= viscosity of the fluid 2100 <N, <4000 Transition (can be laminar or turbulent)

N;, >4000 o Turbulent fiow

This is also laminar flow: Video: Digitally controlied laminar fountain in Burj Al Arab building ,

https://www.youtube.com/watch?v=uZh8Dfymg38

And then we looked at types of flows. There are 2 major types of flows one is laminar where
the flow occurs in layers depending on the geometry, either flat layers, cylindrical layers, one
cylinder, seconds and the third cylinder and so on and so forth, one inside the other in layers
and they flow happens without intermixing of the layers or the other type is the turbulent flow

where pockets of fluid tumble over each other when the flow occurs.



And then we saw that the Reynolds number gives us a means by which we could predict
whether the flow is going to be laminar or turbulent, if the laminar number is sorry if the
Reynolds number is less than a certain value in any situation, then the flow is laminar if it is
greater than a certain value then it is turbulent. Those values for the case of tube flow and only
for the case of tube flow turned out to be 2100 less than 2100 it is laminar and greater than

4000 it is turbulent in between we do not really know.

Then that was a long introductory chapter, but that was a lot of fun information, therefore, it
would not have been tiring. Then we started getting into the analysis of these systems. From
the point of view of momentum flux, as we mentioned earlier, there are 2 major approaches to
the analysis. One is a shell balance approach, the other one is the conservation equation
approach. The shell in the shell balance approach you write momentum balances over a thin
shell representative of the geometry of the system and then you could integrate that to get the
overall picture.

(Refer Slide Time: 10:26)
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Momentum is a conserved quantity
Thus, momentum balance can be used as a principle to obtain useful relationships
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On similar lines as shell balances for mass, we will first do shell balances for momentum
That would provide good physical insights into the process
We will do balances over a thi

rically representative shell of fluid
The thin, representative shell is the ‘system’ or ‘control volume’ over which the momentum balance is written

To understand the application of the shell balance technique, let us consider the case of flow in a falling film
over an inclined surface
This flow has practical applications - the Bostwick viscometer uses such a flow to measure viscosity

in the earlier chapter, when we balanced total mass over a system (or control volume), we wrote:

Rate of total mass ) {Ru:eu/ total masx) (Ruu’ of total mass ) _
\out of the system into the system . \accumulation in the system) ~

So, we had used the flow over an inclined flat plane to iIIL;strate the shell momentum balance.
We had written from by extension of mass balance, mass is a quantity momentum is also a
quantity. Only thing is that the momentum balance strictly speaking is Newton’s second law
of motion, where the rate of change of momentum is directly proportional to the flux acting on
the control volume there.

(Refer Slide Time: 10:58)



9

iy,
0rus?”’

o Y,

%
/

We know from basic physics that momentum is a conserved guantity in the absence of external forces
When external forces are present, according to the Newton's second law, the rate of change of momentum is equal
to the (vector) sum of the forces that act in the direction of motion, on the system or the control volume

h

=
-
|
m

"Ruh- of momentum ) af

Rate of momentum ) _ [_(uu:uf forces acting
\out of the system -

) " \accumulation in the system

on the system
Eq.33.-1
Under steady state (S5} conditions, the accumulation rate is zero. At SS, transposing the above equation, we get.

Rate of momentum ) (Rareof mmnenrmn) (Sum of forces acrmg) 0
into the system out of the system on the system &

Momentum can enter/exit the shell (system) by
(1) Molecular means (momentum flux) and/or
(2) Convection (fiuid motion)

Let us write the express the above in terms of quantities that are convenient for us ,
<

Therefore, we wrote our balance equation to take that into account the sum of forces and the
rate of momentum accumulation. And then we started looking at a steady state case if it is not
steady state, then you will have to take this into account also. So for a steady state case the
momentum balanced turned out to be rate of momentum into the system minus rate of

momentum out of the system, plus the sum of forces acting on the system equals 0.

Then we said that the momentum can enter or exit the shell in our case of a thin layer of fluid
over an inclined flat plane. The shell was a thin cuboid, a very thin cuboid at pretty much the
center of say the liquid layer that is flowing. And we looked at how momentum could enter
momentum could exit because these are these 2 terms. And then we looked at some of forces
that are acting on that particular system and equated those, that is all we did; this is the simple
thing we did.

We expressed these aspects, the momentum aspects and the force aspects in terms of the
quantities that we know. And that is what made the equation look a little daunting. The basic
principle is just the same. Also, I would like to remind you that this course is not a mathematics
course, we will be using mathematics and whatever mathematics we need, we will pick up and
use it here, you will not be tested on your mathematical progress and so on and so forth in this
course.

(Refer Slide Time: 12:34)
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And when we went about doing that, we of course looked at the situation where the flow is
well developed, the velocity at a particular in this case it was X a particular thickness of the
layer that remains the same irrespective of the length over which it travels. In other words, we
are looking at the region where the flow is well developed.

(Refer Slide Time: 13:04)
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Note: The rate of momenturn = (area x momentum flu) ——_
Now, let us express the various term in the momentum balance in terms of convenient quantities NPTEL

By molecular mechanism:

Rate of - momentum in, across the surface at x: (LW) I”],

Rate of - momentum out, across the surface at x+Ax (W) Taalesdx

By convection:

Rate of 2- momentum in, across the surface ot 2=0: (W Ax v,) (pv,)| =0
Rate of 2- momentum out, across the surface at z=L (W Ax v,) (pv, )=

B C I OO TEUR (B B4

We looked at this and then we did the balance by writing in detail, what terms contribute to the
entry and exit of momentum by molecular mechanism and by convection.

(Refer Slide Time: 13:19)
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To find forces:
Free body diagram
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The liquid layer is open to atmosphere
Itis a thin layer, with a negligible vertical distance
Let us assume (p, - p,) is negligible

The normal force is not relevant to the direction considered

We ignore the force due to difference in pressure because the film is thin
The gravity force is the only significant one e

If there are other forces present, they need to be included here

Gravity force acting on the fluid in the direction of motion:

Then we put all these terms to this is a free body diagram, which shows that you have
essentially, you know, a free body diagram, you cut out a part of the thing that you want to
analyze, look at the forces that are going to act on it as though it is going to stand separately
and that is a standard means of analysis. So, you have a pressure force that is acting on this
side, a pressure force that is acting on this side, a normal force that acts and gravitational force

that acts right down.

It is at an angle of beta. The plane is at an angle of beta to the vertical. Then since the film is
thin, we argued that we could ignore the difference between po and pi, because the upper part
is anyway open to atmosphere that is going to be the same the lower part of course, the
thickness, since the thickness is very very thin, very very small, we could ignore any changes
and therefore, this force cancels with this force, this force is irrelevant in the direction of
motion. Therefore, only a component of the gravitation force comes into being on that we
talked about.

(Refer Slide Time: 14:27)
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Substituting the above into the momentum balance, Eq. 3.3. - 1, at S5, we get

b
°

=
-
=
m
o

IWTy |, = LWTy | WAX p 07|, = W AKX p 07, + LW AX pg cOsB =0 £q.33.-2

We are analysing when v, # f (z). Thus the Ill and IV terms on the LHS cancel with each other.
Next, if we divide by (LW Ax) and take the fimit as Ax - 0, we get

lim Talvear = Taly) _ cosp
4x-0 Ax =P8

dry,
—2 = g cos £q.33.-3
T P cosh

The solution is

Te=pgxcosp+ C

And then we did a balance, we simplified the terms, we wrote it in terms of a derivative, then
we could get an expression for the shear stress profile. Once you got an expression for this
shear stress profile, which is this we said that you need a relationship between the shear stress
and the velocity to get the velocity profile. Typically, these are aspects of interest, a shear stress
profile, the velocity profile for various different situations. So for a case of Newtonian fluid, it
is quite simple. You have the Newton’s law of viscosity, which relates the shear stress to the
velocity gradient, and that is what we used.

(Refer Slide Time: 15:08)
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At x = 0 s the liquid-gas interface
Consider the top-most liquid layer, and the layer of gas (air) that is in contact with it. They can be assumed to
stick to each other, and thus move with the same velocity. Thus, the velocity gradient and hence the momentum
fluxatx =0, is zero.

A standard boundary condition that can be used at fiquid-gas interfaces is that the momentum flux

(hence the velocity gradient) in the liquid phase can be assumed to be zero for most calculations.

=
-
-
m
—

Atx=0, 1, =0 £q.33.-5

This boundary condition applied on to the solution given in Eq. 3.3. - 4 yields, C, = 0. Thus,

Tyz = pgXCOSp £0.33.-6

This is the shear stress distribution, t,,, = f(x)

To obtain the velocity distribution from the shear stress distribution, we need a link between the two.
That link is provided by the constitutive equation. For example, for a Newtonian fluid:

dv,
e =iy

Before that | think this is the shear stress profile. This is the linear profile in this case, 0 here
and maximum at the base of the wall, the plane over which the flow happens.
(Refer Slide Time: 15:24)
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Substituting the constitutive equation into Eq. 3.3. - 6, we get

-
o )
m
m

dv, J
_7=_(“_g‘°’ﬁ)x £.33.-7
dx ’

The solution of the above D.E. is

L}:—(%ﬁ‘)]ﬂ’ﬁ £0.33.-8

C, can be found by another standard boundary condition: at the solid- fluid interface, the fluid velocity equals
the velocity with which the surface tself is moving
The fluid is assumed to cling to any solid surface with which it is in contact {‘no-slip’ boundary condition)

.
Atx=0, v,=0 £9.33.-9

By substituting the boundary condition into the solution, Eq. 3.3. - 8, we get

Then, we did we substituted the Newton’s law of viscosity to get the velocity profile. We also
talked about 2 important boundary conditions. At the liquid gas interface, the shear rate equals
shear stress equals 0 because the velocity gradient is O, the layer closest layer of gas closest to
the liquid gets pulled along with the liquid in the with the same velocity and therefore the

velocity gradient there is 0 and therefore, the shear stress is 0 that is one boundary condition.

And then the other boundary condition was on the other edge the liquid solid interface. The no
slip boundary condition says that the layer closest to the solid surface clings on to the solid
surface and does not move if the arc moves the same velocity as that of the solid surface. In
this case, the solid surface does not move and therefore, the velocity of the layer closest to the
wall happens to be 0. So, that is a no slip boundary condition.

(Refer Slide Time: 16:33)
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And then using those we got an expression for the velocity gradient. Once you get an
expression, you could just put in numbers and sketch it, and therefore, I have shown it to you
in some cases, | have asked you to go and sketch. So, that you pick up how to go about
sketching, how to visualize flow velocity, flow profiles, shear stress profiles and so on and so
forth.

So in this case, | showed it to you as a free sketch it is a nice parabolic curve. Imagine this to
be a parabolic curve. It is a function of x square and then we looked at where the maximum
velocity occurs? What is the expression for it? What is the average velocity?

(Refer Slide Time: 17:16)
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By substituting Eq. 3.3. - 10in Eq. 3.3. - 12, we get
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_padeosp " x\?
Veang =5 | "(5) ¥

pg&cosp

u

n l'l S

3 4

=
o
-
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O-107

pgbPcosp
- 3u

£9.33.-13

The volume flow rate, Q is given by

0 g 8cosf
L n‘f s

W
Q= [ ’ vydxdy = W8 v, = W
Il M

And what is the average flow rate? Or the flow rate which is nothing but the area times the
average velocity. So, all this we did by shell balances or this was an application of shell
balances to momentum or shell momentum balances to get insights into a flow. It also has
practical applications as in a Bostwick viscometer essentially use this kind of a flow to calculate
the viscosity.

Then we looked at the other approach, which is the conservation equation approach. This being
a review this might well be long but it does not matter because you have already seen all these
things. You are just looking at it in one go. So | do not, | hope it is not too tiring if it is tiring,
just stop it for a while and then come back and take a look at it.

(Refer Slide Time: 18:26)
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As mentioned in the chapter on mass flux, shell balances can get cumbersome, especially in cylindrical and
spherical coordinate systems

As before, let us derive a reasonably general equation of momentum balance (strictly, Newton's I law) that
can be directly used S
T

gy, %,
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That equation of momentum balance is called the ‘Equation of Motion’
Consider Cartesian co-ordinates and the same cuboidal element that we considered for mass balance

=
o
m
-

z xeAX y# By 24 A2
e

So, the equation of motion we actually derived for a rectangular Cartesian coordinate control
volume system. So, once you have this, you could always move from this coordinate system to
the other coordinate systems using the methodology that has been given or detailed in your
appendix, the first appendix of the book textbook. So we considered this cuboid of dimensions

AX, Ay, Az, and then we looked at the same things.

The ways by which the momentum could enter and exit, the ways by the accumulation of
momentum in the system; earlier, we were looking at a steady state case, we are clear that we
are looking at a steady state case well developed flow and all that. This is a general expression
that we are trying to derive here and therefore, we consider the accumulation term. And then
of course, the forces that act on this at least 2 major forces that act on this were considered the
pressure force and the gravitational force.

If there are additional forces, then you need to add it at that stage and rederive the entire
expression, it will turn out to be an additive feature. So, if once you develop that view, then
you can go to the final equation and start adding, but till then, you need to come here and then
add the forces at this initial step of derivation.

(Refer Slide Time: 19:52)
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So we looked at the various expressions as a part of this, we needed to understand a second
order tensor and a dyadic product all those new things pw is the dyadic, v v was a dyadic
product.

(Refer Slide Time: 20:02)

S
EAAY
First, let us consider only the x-component of momentum rate 8 * 4
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We can later extend the same to the other components Vg
ol
Momentum rate due to convection
NPTEL
Entry rates:
x direction (through the face at x) = (,n', )x'.| Ay Az
x
y direction (through the face aty) = (l"\ JI\“ Axdz
2 direction (through the face at z) = (/u',ll', \l Ax by
Exit rates:
x direction (through the face at x+Ax) =(p "\)1'x| . dydz
eax
y direction (through the face at y+dy) = (pr\ )r,| Ax Az
: y+dy
zdirection (through the face at 2+42) = (m',)r.| Axdy
e

The net x-momentum rate due to convection is:

Ay8el(prdy = (peedvelcsne |+ Axdz (o] ~Gmwel |+ Sxy (ol (oo, vl s

And then we looked only at one component of the momentum because each component has 3
different parts to it. And because it is a vector, therefore, there are 3 different parts to it. And
therefore, there are 3 components therefore there are a total of 9 parts. So instead of dealing
with all the 9 parts together, we looked at only the x component and then extended that to the

y and z components. So these were the entry rates, exit rates that we got this is the net x
momentum.

(Refer Slide Time: 20:41)



Momentum rate by molecular aspects
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For better understanding, let us consider the force that causes the shear stress.
: NPTEL
Letus take

the force that acts on the face at x as F*,
the force that acts on the face at y as F*,,
the force that acts on the face at 7 as F*,

Each of these forces would have 3 {x, y and z) components

Then we looked at molecular aspects we went through understanding the force that causes the
shear stress and how that has so many different components.
(Refer Slide Time: 20:53)
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Dividing the force components by the appropriate areas s 2l
will give the components of the stresses E‘ ' "
R A
UV
S
F . Txx 3
F¥,y { components of F5, Txy components of Ty NPTEL
S T.
Py "
S
F yx . Tyx
Fsyy components of FS,, Tyy{ components of 7,
S Tyz
Fy, y
S
F 5 . Tzx
FS,,, components of F5, Tzy{ components of T,
s Tz
F 2z A
7; denotes shear stress when i # j, and it denotes normal stress when i = j
Both shear stress and normal stress arise due to molecular aspects
Pressure is not related to shear or normal stresses

And you divide each by the area you get so many different stresses. Some of them are shear
stresses, some of them are normal stresses and they also cautioned you that the normal stress
is different from pressure.

(Refer Slide Time: 21:11)
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Let us recall the general momentum balance equation (Eq. 3.3 = 1)

(£
[}
/]

Rate of momentum ) (Imnwl[ munu-nlumi (I(’uh‘qu momentum ) _ (.\‘mn of forces acting
out of the system into the system accumulation in the system/ ~

=
-
=
m
L

on the system

Substitute the various terms for the x-direction, divide by AxAyA~

And take the limit as Ax,dy,87 =0 1o get

4 tq.34.-1
o t PYs q

Apvy) _ [(Apv) pvyv) dpuw)\ (g, dn, 0\ dp
- ( w Ty ” ]( )

i

o oy dz) ox
Note: £q. 3.4, = Lis for the x-direction alone

If we do a similar exercise in the y and 7 directions, we would get

. .
d(pvy) (u(,..v,.-\) A(pryy)  d(pe |'\]) (.u,\ Ity rlv‘) ap
+ +
);

= )
at o dy 02 L

+ + t
dx dy 4 dy

dpv,) dprr,) dpvyv.)  dpv,v,) dr, dr, o dp
= | t ) ( t ' ) tpg
a ( x dy @ d dy &z ).

Then we went through the derivation we put everything together, including the forces of fluid
pressure and gravity alone here, then we wrote our differential equation we just substituted all
those terms we divided throughout by Ax, Ay, Az took the limits as Ax tends to 0, Ay tends to

0, Az tends to 0, to finally arrive at this expression, which is the x momentum balance.

And then we realize that this was the product of our product we could you know simplify this
further. We went ahead before that, the other directions. This is 1 set of equations we wanted
to simplify this further for our own use.

(Refer Slide Time: 21:59)
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d(pv) ” g - NPTEL
s = -[F.pvd] - [F.]] -7p + 0§ £9.34.-4
Rate of Rate of gain in Rate of gainin Pressure Gravitational
increase in momentum momentum by force on the force on the
momentum by convection viscous effects element element
per unit volume per unit volume per unitvolume  per unit volume per unit vélume

This is a vectorial representation of that equation. So, the left hand side is rate of increase in
momentum per unit volume, this is rate of gain and momentum by convection per unit volume,
this is rate of gain and momentum by viscous effects per unit volume, this is pressure force on

the element per unit volume, this is gravitational force on the element per unit volume.
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Let us look at equations 3.4-1, 34-2 and 3.4-3 again \\ Y
We can recognize that  has 9 terms. j
t Is 2 second order tensor with 9 components that can be represented by
NPTEL
To Ty Tu
=Ty Ty ’w) Soe Appendix 1 for tensor algebra details
Y Ty Tn

i Is 2 new concept

Itis neither a dot product nor a cross product

Look at equations 3.4.- 1 to 3 (first terms on the RHS) to understand that U1 has 9 terms
1 is known as the ‘dyadic product’ and is a special form of second order tensor

A dyadic product of 2 vectors 1 and W is

Wy UWy DeW,
,'.g=(l',.w, UyWy Dy

See Appendix 1 for dyad algebra details
VoW Wy UW

Then, we looked at the tensors because we are looking at that for the first time on the dyadic
product.

(Refer Slide Time: 22:34)
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let us write £g. 34, -1 28 r
X NPTEL
a(pwy) (d[m',r,) pvyty)  Apvyey) (v)r" oty |lr,,) ap
+ + + =- . + ==+ 0ly
ot ax dy iz ) dx dy dz) ox
The LHS can be expanded as
v, dp dv, dpry v, dpvy v, dpv,
chi S N POV, U i SRPY SO e RTRPRLL: SRR oL,
Pac (" ox T gy P gyt gy TRt m)
[ dp dpv, dpw,  dpr, dvy v, v,
= 1 1, + + +| pw, + v, + v,
Pa ™ u Ty T )T\ T g Ty
w, dp [, dp v, dp v, (v, v, v,
=p=—+v T+, o+ + +p=—+, +pl v, +1 +1,
Pt T "["m B TPy Ty TP T ha) T P\ Ty T

Then this is what we did, we went and expanded this because this is a function of 3 variables.
We took 2 at a time expanded since till we came down to individual variables because that
helped us simplify the equation quite a bit.

(Refer Slide Time: 22:53)
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Using the equation of continuity D_I -p (V U)
t

the first term on the RHS of the previous equation can be written as the negative of the second term on the RHS. Thus,

. v, v, a iy )
E=v [-p[—=+=2+ +pv, =2 =
WP\ Ty T ‘”‘(m * n/)

Thus, Eq.3.4.~1can be written as

=
-
-
m
m

Dv, (ﬂr“ aty, zh,,) dp

=24 -4
"De oy o) o P

The other two components y and z) of momentum rate are expressed as above and added together, to get

o N I PR f.34.5

Viscous forces on Pressure Gravitational
the element force on the force on the
per unit volume element element

per unit volume per unit volume

mass

See Tables 3.4.-1t03

The other two components (v and z) of momentum rate can be similarly
expressed and added together, to get a 3-D representation

Dv = - .
p = —[V.T] -Vp +pg
Dr
Mass . Viscous Pressure Gravitational
—— x Acceleration )
Volume forces on force on force on
the element the element the element

per unit volume per unit volume per unit volume
(3.4-5)

So, this is what we got and we this is mass divided by volume times acceleration that is this
term. This is the viscous forces on the element per unit volume, or in other words this is force
mass into acceleration per unit volume, this is viscous forces on the element per unit volume,
this is pressure force on the element per unit volume this is gravitational force on the element

per unit volume.

So this equation, the various in terms of its individual components is what is given in table 3.4
- 1to 3. I had asked you to make a copy of this, as well as the other 3 tables that were given,
which | showed you briefly, please make a copy of this, because we had be using this equation
over and over again, as you have already seen, probably we need to do this review in 2 stages.
It is quite a lot of information. So might as well, we let us do for a couple more minutes and
then take a break and then come back and do the remaining part of the review.
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If the interest is in finding velocity distributions, we need to substitute the stresses in teems of velocity gradients
and fluld properties,

We need to realize that the simple relationship between shear stress and a single shear rate in the 2.0 form of NPTEL
the Newton's law of viscosity,

dv,
Ty = (= m

was for an initial understanding

In 3-D, multiple velocity gradients would determine a shear stress

The equations given in Table 3.4 = 4 to 6 are the components of the stress tensor for a Newtonian fluld in
faminar flow in the three coordinate systems are needed for a complete representation of the dependences
of shear stress on varlous shear rates.

If we substitute the expressions from Table 34. =4 in the momentum balances for the 3-directions, we would get

Then if the interest is in finding the velocities then you need the relationship between the shear
stress and the velocity gradients and the tables 3.4 - 4 to 6 give you that in the 3 coordinate
systems, we are interested in only the rectangular Cartesian coordinate system here for this
derivation.

(Refer Slide Time: 25:23)
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The above equations of motion fq. 34.-6 to 8,
equation of state, p = fp), and
variation of u = flp)

completely determine the pressure, density and velocity components in 8 Newtonian fluid in laminar flow.
.
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When p and y are constant, since 7i=0 according to the continuity equation, the equation of motion can be written as

- /FWW%%
Ytgyspsr”

D . =
/rb—;:u[”l:—[’p—,ng' £g.34.-9

n Y

NPTEL

This is the famous Navier - Stokes equation

If viscous effects are also not wmpunann(“ 7= 0. Then, Eq. 3.4.-5 becomes

Dy -
22 il & g3 £0.34.-10
P Dt ptpg

This is called the Euler equation

And therefore, we took those expressions substitute it we got these. And then we could simplify
the equation in terms of the velocities, pressure, and density and the viscosity alone. And this
is valid of course, for Newtonian fluid because this relationship between the shear stress and
the shear rate, the table 3.4 - 4 to 6 are valid only for a Newtonian fluid. So, if we are
considering a Newtonian fluid and at constant p and p, then we found that this equation can be

used and these are the second equations in the tables 1t0 3,3.4-1t0 3.4 - 3.

If viscous effects are not important, V.1=0. Then, Eq. 3.4-5 becomes

02— _p4pi (3.4-10)
Dt )

Equation 3.4-10 is called the Euler equation.

and this is the famous Navier - stokes equation, then the viscous effects are not important this
term goes out, then you get only these 2 terms remaining on the right hand side this is called
the Euler equation and so on. So, these equations are actually special cases of the complete

momentum balance expression.

Then, we started looking at the applications of the equation of motion to different situations.
Let me look at 1 application and close today. And in the second part of the review, | will
consider whatever we have done post that the once we had the equation of motion then I showed
you the tables. I am not going to show you the tables here, the some applications.
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Let us solve the study-state falling-film problem using the equation of motion

Vs
Y

For the most convenience for this system geometry, let us use rectangular co-ordinates ~
Let us use Eq. C1 of table 3.4~ 1 to get the shear stress profile NPTEL
Note that v, =0, v, =0. Therefore, only Eq. C1 with v, is relevant

/
ol
o

{ 2 2 g2 =
=g Rl B2

et Py k)" R\ % TR TR

ar.
0

A go=geosp  weget 0=-—

< + pg cosp
X

which is the same equation as £q. 3.3. - 3, we got using shell bafances

Recall that we had earlier solved the same problem with shell balances
This illustrates the ease of solution when the equation of motion approach is used

So, when we applied the equation of motion to the same case of athi falling film over in an
inclined surface that we did earlier using shell balances in 1 step we could get the answer. So,
that is what | showed this is the equation corresponding to the rectangular Cartesian coordinate
system which the geometry of the system satisfies. And therefore, we took this equation

cancelled out the terms that are irrelevant.

For example, the first time closer because we were looking at steady state, there is bulk velocity
in this case, there is no velocity in the x direction bulk velocity in the x direction there is no
bulk velocity in the y direction, of course, there is a bulk velocity in the z direction. However,
because the flow is well developed the z velocity is not a function of the distance along the z

direction, and therefore, this term goes to 0.

This is the chosen condition that the pressure does not change and therefore, by that
approximation, this term goes to 0. This of course remains this term goes to 0 because ty, is
not a function of y. For this, | said later that you could use that here also. So, you look at the
direction of the velocity and then look at the direction of the velocity gradient, if there is a
possibility of a velocity gradient here because of a velocity in a perpendicular direction then

this term becomes relevant.

If you look at yz here is z is the direction of the velocity, which is this and the velocity gradient
is in the y direction, there is no velocity gradient in the y direction here, and therefore, this goes

to 0. Similarly, because of the velocity in the z direction, the second subscript here, is there a



velocity gradient in the z direction, there is no meaning also there so, this in this case, there is
no meaning. Therefore, this term goes to 0 and we got this expression.
Since
g. = g cosp
we ge‘r

0=— o, +pg cosf
dx '

which is the same equation as Egq. 3.3-3.

which is the same equation that we got by using shell balances. Of course, we got a lot of
insights into the physical aspects of the system using shell balances, but it can become
cumbersome especially in cylindrical and spherical coordinate systems and therefore, use of

this is preferred.

Of course, there are limitations to the use of this when there is a change in let us say the cross
section area these approximations cannot be used because we had cancelled the areas
throughout that was one of the main approximations of that was one of the main assumptions
made when we derived this although it is not very apparent. So, this equation will not be

applicable, when you have flow through a cone and so on so forth.

Conical section this is not applicable so, the first equation is of course, that the first equation is
general. It is only when we derived the Newtonian fluid constant p and u we made this

assumption.
(Refer Slide Time: 31:09)
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To get the velocity profile for a Newtonian fluid, we can directly begin from Eq. C2 of Table 3.4.~ 1
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So, check that as long as you are cancelling the areas it will not be applicable so, check whether
when the first one is applicable. So then we looked at how to get the velocity gradient here
again, 1 step you take the velocity equation cancel out the terms, and then we got the same
equation as the earlier case for getting the velocity as a function of x or this one was the

expression, the same expression that we got earlier.

So it is much easier to use the conservation equation approach is what we said, we have been
at it for quite a while now, maybe about half an hour or so, it even the review would get tiring.
So let us do the review in steps or stages. So this is part 1 of the review of momentum balances.

It is a long chapter of course when we meet next we will do the second part see you again.



