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Lecture - 42 

Friction Facets for Packed Beds 

 

Welcome today we look at the friction factor for packed beds; beds of many different materials 

are very relevant for biological engineers. We will see some examples when we in the next 

slide. So we are going to look at the friction factor for packed beds. 
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Packed beds are used in many biological processes for example water and waste water 

processing the undesirables are removed by microorganisms or other agents in a packed bed of 

soil for example in certain stages of such processes, a rigorous analysis of flow through packed 

beds is rather difficult right it is flowing through tortuous channels in a bed of bits is soil. So 

rigorous analysis becomes difficult even if an effort arrives at a representative set of 

mathematical equations from first principles they may not be easily solved. 

 

This is normal difficulty, however packed beds are widely used and therefore we need some 

way of having some inside into them some understanding so that we can use it for designing 

those operations and for operation of this. One can use a simpler analysis for such a thing and 

this whatever we are going to see now the friction factor approach gives us one such simpler 

analysis approach. We are going to replace the tortuous flow path inside the beds through the 

voids by a set of identical parallel conduits of the same length as that of the bed. 

 



So the actual path could be something like this, so we are going to replace all those by path 

through a series of parallel cylindrical conduits or parallel conduits itself usually cylindrical 

identical parallel conduits of the same length as that of the bed. Let the radius of each conduit 

be R, so it is cylindrical and the total cross sectional area of the conduits is number of conduits 

times the cross sectional area for each conduits. 

 

That will take to be S, we will use a representative of hydraulic radius to make the result 

somewhat extendable to many cross sectional geometries, you can consider other cross sections 

also and as long as we use hydraulic radius cross sectional area by wetted perimeter remember 

the definition we can extend this to other geometries also. Let the particles be uniform with 

point contacts between them this is an idealize situation for analysis. And we will assume 

laminar flow in the conduits to begin. 
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The total drag force per unit cross sectional area in the parallel conduits is the viscous drag 

force plus inertial track force per total cross section area. Something called the viscous drag 

forces, something called the inertial track forces. So FD the total drag force is the sum of the 

viscous drag forces per unit area plus the inertial drag forces per unit area. Now let us focus on 

each conduit with radius R we have assumed laminar flow. 

 

And therefore the average velocity in the conduit is given by the laminar flow expression we 

have rich average velocity in a laminar flow is  



 

V is just added to emphasize the viscous component or w is good enough to watch hear but V 

is added to emphasize the viscous component. 

 

And this is normally found in the formulations this is there the book, so we will follow the 

same thing here. Now substituting this expression for -∆ P into the previous expression and this 

3.4.2 -17,  
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And we already know that the shear stress is the viscous force divided by the surface area. And 

to generalize it to channels of any cross section we are going to express it in terms the hydraulic 

radius cross sectional area by wetted perimeter.  
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So cross section area the imaginary condition the bed times the length of the imaginary 

conduits, so this gives we are just equating the volumes here. So this the total volume of these 

straight pipes straight conduits must equal the volume of voids in the bed that is essentially 

what this says the cross section area of the imaginary conduits and bed times the length of the 

imaginary conduits that gives you the volume of the imaginary conduits that must equal the 

volume of beds. 

 

And CS area of bed times the length of the bed is nothing but area of the bed length to the bed 

is nothing but the total bed volume that must be here epsilon void fraction this is the void 



fraction porosity void fraction by one of our earlier assumptions the length of the imaginary 

conduit is the same as the length of the bed. So this on the scan can be canceled. Therefore the 

cross sectional area of the imaginary conduits in the bed divided by the cross sectional area of 

the bed is your epsilon equation 3.9.3 - 5. 
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The mass flow rates through the conduits are all additive masses are scalar the mass flow rates 

are all additive also the total cross sectional area of the conduits we are going to call the total 

area of the conduits as S. So the S is nothing but the cross sectional area of each conduit times 

the number of conduits. Therefore ρ v0,avg S0 = ρv, avg S. So mass times the velocity times the 

area has to be the same because we are considering 2 different situations here. Since density is 

a constant we can cancel out those this is nothing but mass conservation nothing else; mass rate 

here must mass rate equal here mass by unit volume and so on so forth you can work out the 

units turn out to be mass rate.  



 

 

We did the above few steps because v0 average the superficial velocity before it reaches the bed 

the velocity of the flow rate before it reaches the bed or the empty tower velocity is much easier 

to measure compared to the velocity in each conduits each of these imaginary conduits or 

conceptual conduits that we have looked at. It is a lot more difficult to measure that they are 

conceptual anyway. 

 

Whereas this is this can be measured you know the cross sectional area by the wetted perimeter 

especially when before it reaches the bed is very easy to measure. Sorry cross sectional area by 

bedded perimeter is your hydraulic radius here we are looking at volumetric flow rate divided 

by the area that will give you the velocity. 
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Let us relate the pressure drop across the bed to measurable parameters. And let us focus on 

the particles in the bed. The aim is to express the relevant equations in terms of measurable and 

calculable particle parameters. That is what we are trying to do here remember we are looking 

at the bed we are approaching the bed in some way with our view so that we can get some 

useful things for design and operation. 

 

 

Set here recall we have assumed point contacts between particles.  

 

There is no loss in surface area due to contact the total surface area of particles will equal the 

total surface area the conduits. And if you assume uniform particles then the number of particles 

is nothing but the volume of solids in the bed divided by the volume of a particle. So volume 

of solids in the bed is nothing but S0 L; S0 is the surface area length this will give you the 

volume. Volume you subtract the void volume which is epsilon times the total volume from 

the total volume you get the volume of solids. 
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And we can express the drag force as a product of the pressure drop times effective area. 
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And so for any particle if we define an equal diameter there is no guarantee that the particles 

are all spheres. So let us define an equivalent diameter and the same length as that of the equal 

radius; so equivalent diameter is the diameter of the sphere having the same volume as that of 

the particle and sphericity as the surface area of the equivalent sphere divided by the actual 

surface area. So this gives us some link between the idealized sphere and the actual particle. 

 

 

So we take a certain type of sphericity and we can substitute that and the analysis that we have 

done for spherical particles were kind of extended to other particle shapes also by the use of 

this sphericity. 
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Now let us recall an earlier equation which is this we have already seen this; this comes from 

the drag force coming from 2 components and so on so forth 3.9.3 - 13 from experiments Ergun 

scientist he found that k1 turns out to be 150 / 36 over a wide range of experimentation k2 turns 



out to be 1.75 / 6 and therefore for a packed bed the pressure drop becomes pressure drop is 

one of the important design parameters. 

 

So that we obtained by using the friction factor approach for pack beds. This is highly useful 

in the design of pack beds and it works on most packings except packings of extreme shapes 

such as needles, rings or saddles. It is not so reliable or we get an estimate out of this and then 

we need to use a huge what can I say fudge factor or a safety factor and then design that is what 

we do. 
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So by comparison to the friction factor defined earlier we can define a friction factor for a 

packed beds 
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This is called the Kozeny Carman equation which is also useful. S0 v0 average is the volumetric 

flow rate and f is sphericity the diameter of the particle and the void fraction are constants the 

flow rate is directly proportional to the pressure drop and inversely proportional to the product 



of the radius the product of the viscosity times the length of the bed, so this is what it turns out 

to be  S0 v0 average is the flow rate we are taking it to the other side.  

 

 

This expression is important this relationship is important. The flow rate is directly proportional 

to the pressure drop and inversely proportional to the viscosity times the length is called the 

Darcy's law and it is very, very wide applications. 

 

Darcy's law is used in research significantly in a fruit the application is only limited by 

imagination as long as you have a have something that can be viewed as a packed bed even 

fruits then you know the motion of the fluid through the fruit and so on so forth then you can 

apply to Darcy’s law there flow rate is directly proportional to the pressure drop inversely 

proportional to µ times L. 
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At large Reynolds numbers the first term in the right hand side of 3.9.3 - 19 becomes negligible 

what is that 3.9.3 - 19 at large Reynolds numbers you have Reynolds number in the 



denominator therefore this term becomes negligible compared to 1.75. And therefore the 

friction factor of the packed bed at large Reynolds number equals 1.75 which is called the 

Blake plummer equation this expanded you get equal to 1.75, 3.9.3 - 22. 

 

 

And the above equations can be used to predict pressure drop across beds pressure drop is a 

very important design parameter. And we have seen a way by which we can get a measure of 

the pressure drop by using the various measurable parameters. The pumping requirements 

across pack beds can be estimated once you know the pressure and so we have seen the 

application of the friction factor approach to various different situations to a piping network 

consisting of straight pipes. 

 

And pipe fittings to a contraction stenosis in a biological situation for motion relative motion 

of a solid and a liquid through a liquid relative motion between a solid and a liquid and now 

pack beds, pack beds are very widely used. We will stop here for this class. When we come 

back we will review the momentum flux chapter large chapter momentum flux chapter and 

then we will move forward. See you then. Bye. 


