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Lecture – 29  

Laminar Flow Through a Pipe - Continued 
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Welcome back. We are in the middle of the derivation of the relevant expressions for fluid flow 

of a Newtonian fluid through a laminar flow of a Newtonian fluid through a pipe cylindrical 

pipe that is placed vertically. We drew some good insights. We saw that the pressure is not a 

function of radius, the pressure is not a function of θ, and therefore the pressure is not a function 

of the cross section. 

 

The pressure is the same across the cross section however, the pressure could be different at 

different cross sections okay. It needs to be different at different cross sections and this is where 

we stopped last time  
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The left hand side is a function of r alone, the right hand side is a function of z alone and this 

is an ordinary differential equation, how do you solve this? Recall from your math classes as 

to how to go about solving this situation. You have one side as a function of one variable alone, 

the other side as a function of the other variable alone, what would be the solution? They both 

are derivatives, what would be the solution?  

 

The solution is, if you recall it is fine, otherwise I will tell you what it is. You have it of this 

form µ by r times derivative of a function of r with respect to r = a derivative of a function of 

z with respect to z. This is possible only if each derivative equals the same constant okay that 

is the only solution that is possible, this is what math tells us, would have told you when you 

went through a math course.  
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At r = 0 we know that, okay let me spend a little bit of time on this. If we have some boundary 

conditions, we can solve this. We need a boundary condition for 
𝑑𝑣𝑧

𝑑𝑟
 in terms of r to be able to 

solve this directly or we have to wait for another integration and then substitute if the boundary 

conditions are appropriate. Now we have a relevant boundary condition directly and that is this. 

We have a cylindrical geometry here.  

 

The conditions at the center must be the same irrespective of the radius that it choose to traverse 

in to reach the center from the surface, right. So tube consider certain cross section whether 

you go through this radius, whether you go through this radius, whether you go through this 

radius, whether you come from that radius everything should, all converge to the same 

condition at the center.  

 

You have already seen one such situation earlier when we did mass flux for a spherical system 

that for such a thing to be physically valid, the only way it will be physically valid is that you 

either have a maxima or minima at the center or 
𝑑𝑣𝑧

𝑑𝑟
 must equal 0 at the center. If you substitute 

this boundary condition, this condition there boundary condition, then C2 would turn out to be 

0, you can substitute and check.  

 



 

The wall is stationary. Therefore the layer of liquid closest to the wall needs to be stationary 

for it to not slip okay. 

 

No-slip boundary condition that is a very common situation practically speaking also. So the 

layer that is closest to the wall sticks to the wall. So, the velocity of that layer is the same as 

the velocity of the wall. The velocity of the wall is 0 and therefore vz at r = R = 0 and this is 

the no-slip boundary condition that we have already seen in mass flow and the earlier situation 

when we started when we did shell balances for momentum. 

 

 

P0 – PL makes better sense, initial minus final, but ∆P is defined as final minus initial and 

therefore we would like to write it in terms of - ∆P which is kind of a natural way of saying 

things. Let us call this equation 3.4.2. – 15. This gives us the velocity profile across the radius 

in the pipe okay that is what we are looking for, we are looking for the velocity profile. We 

have arrived at the velocity profile just by using the equation of motion. 

 



And what is the shape of this velocity profile? What I would like you to do is just go to your 

spreadsheet, MS excel or something like that and take some constant here (– ∆PR2 /4µL), they 

are all constants for a given case, just substitute various values of R and see how vz varies okay 

and plot that and see. You will see that the velocity profile is parabolic, right.  

 

This is one half of the radius, this is the other half of the radius, it will turn out to be something 

like this and it will be parabolic. I would like you to do that, that is the reason I am not showing 

it explicitly here for you, do that and you will find a nice good parabolic profile here, maybe 

later I will show that to you. Here, here itself it is there, but I would like you to do this. So, this 

is the velocity profile here okay.  

 

So this is the velocity scale vz = 0 is this, velocity varies in this direction, at the wall it a 0, it 

reaches a maximum in a parabolic fashion that is what it is. So, this is the typical parabolic 

velocity distribution in laminar flow of a Newtonian fluid, good to remember this. And PL – 

P0 is ∆P and the flow to occur PL needs to be greater, sorry PL needs to be less than P0, – ∆ P 

needs to be positive okay. 
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Okay, now let us draw a little more insights as we did in the earlier cases. The maximum 

velocity is quite easy to see occurs here okay. What is this r = 0, r increases in this direction 

and this direction, therefore r = 0, at r = 0 you get the maximum velocity.  

 



 

Nice to know we have an expression by which we can predict the maximum velocity in a 

laminar flow in a pipe. Equation 3.4.2. – 16. It is also good to know the average velocity across 

the cross section and since there is variation across the cross section, we need to take each 

velocity and then average it over the entire cross section we get the average velocity. So, you 

know the way to do that. 
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And that would turn out to be you integrate that and substitute the limits here, you would get –

 

 

The average velocity is half the maximum velocity in laminar flow in a cylindrical pipe. 

Equation 3.4.2. – 17.  You could also find out the volumetric flow rate which is nothing but the 

area times the average velocity. We already have an expression for the average velocity, so just 

substitute it here, Q is area is πR2 the cross-sectional area circular. 

 

 

So, let us look at this equation a little closely. Volumetric rate is inversely proportional to the 

length and so on and so forth, this is a constant for a given pipe let us keep it that way. It is 

directly proportional to the pressure drop, so higher the pressure drop higher will be the 

volumetric flow rate and it is proportional to the radius power 4 okay. 

 

Which means if you double the radius the flow rate is going to increase 16 fold okay it is a 

good insight to get. If the radius is doubled, the volumetric at the same –∆ P, the volumetric 

flow rate increases 16. This equation flow rate 3.4.2-18 is a very famous equation, it is called 



the Hagen-Poiseuille equation and this is widely used in design and operation itself and 

sometimes even for analysis you can use this. 

 

This directly gives you the variation of the flow rate, flow rate is how much reaches at in a 

particular time, very important design parameter. So this one tells you that it is directly 

proportional to the pressure drop, so you need to create that much pressure drop and more the 

pressure drop will create more the flow rate you can expect. Not just that if you double the 

radius, you are going to get 16 times the flow rate okay. 

 

So, the flow rate is going to change 16 fold, increase of 15-16 fold. So, these are good insights 

I think that is all, okay we still have the shear stress profile. We have we have just seen the 

velocity profile, we have seen some nice things that can come out of it, now let us see the shear 

stress profile.  
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To derive an expression for the shear stress profile, all we need to do is go to equation number 

1 which is a more complete equation of rather C1 of table 3.4 – 2, please look at table C1 first. 

Now, let me formally tell you how to visualize τ θ z okay. I gave you some idea earlier that may 

not have gotten across completely, so let me spend some time to visualize this τ θ z and so on 

and so forth. 

 



 

The first subscript refers to the direction of the velocity gradient, you know the direction of 

action direction of motion right or the direction of the velocity gradient and direction of the 

velocity itself. θ is the direction of the velocity gradient, z is the direction of the velocity of the 

stress or the force let us say and if vz is different at different θ, only then could τ θ z be relevant 

at all okay. If vz is the same at different θ s, then τ θz would be 0. 

 

So, this is a nice way of trying to figure out whether certain terms will exist or whether that 

certain terms will drop out okay. So look at the variation of the velocity in the direction of force 

and see whether a gradient exists at all. A gradient will exist only if the velocity is different at 

different points of that second variable. That is not the case in laminar flow, therefore τ θz is 

equal to 0. Similarly check with it vz is different at different z’s.  

 

In this case vz is a well-developed flow, vz is the same at all z, therefore τ zz is not a function of 

z and vz does not vary with z and therefore this term goes to 0 okay. So, this, this kind of a 

thing you can use to take care of or figure out the relevant terms for the shear stresses, let us 

do that here. Equations C1 is this, let me not read out the terms, you can read it out from your 

table that you made a copy of.  

 

The first term drops out because we are looking at a steady state analysis, this term there is no 

derivative that goes to 0. There is no vr therefore that goes to 0. There is no vθ that goes to 0. 

There is vz but vz is not a function of z, well-developed flow, therefore this term goes to 0, 

𝜕𝑃

𝜕𝑧
 exists of course, (1/r) 

𝜕

𝜕𝑧
 (r𝜏rz) okay. Because of the motion in the z direction, the velocity is 

going to vary in the r direction okay, yeah it does vary, the velocity at different r’s are different, 

therefore this term will remain.  

  



The z velocity at different 𝜃are the same, therefore this term goes to 0. The different z velocities 

at various z’s are the same therefore that term goes to 0 and of course gz remains very relevant. 

So what remains here in equation 3.4.2 -19  

 

We will call this equation 3.4.2. – 20. 
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We reuse the same argument for solving the equation. This is a function of z alone, this is a 

function of r alone, therefore we can convert it to total derivatives. Since this is a function of r 

alone and the right hand side is a function of z alone, the only solution possible is that both are 

equal to the same constant. 



 

So we have a shear stress profile directly, some constant for a given case for a given ∆ P and 

for a given length, it varies linearly with r, when r = 0 τ rz = 0, when r = R the radius τ rz = the 

maximum, the wall shear stress okay.  
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So that is what is shown here. This is the τ scale. If you can imagine this as the τ scale in the 

cylindrical pipe placed vertically, at the center the τ rz is 0 and it linearly increases to its 

maximum value at the walls. Earlier we had shown a parabolic velocity profile, this is a velocity 

scale here and now we have shown the shear stress variation. Remember this, these solutions 

are useful in a wide variety of cases, by repeated use this will become a part of you. 

 

It is also good to remember that you get a parabolic velocity distribution in laminar flow and 

the shear stress distribution is linear with a 0 value at the center. I think that is all I have for 

this class. We have done quite a bit again in this class, therefore we need to move on to the 



next thing, I think we will do capillary flow next and that let us begin in the next class. See you 

then. 


