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Lecture — 26
Equation of Motion - Continued
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Let us recall the general momentum balance equation (fg. 3.3.- 1)
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Welcome back. In the previous class, we had derived the momentum balance equation,

In compact, vectorial notation

o(pv = = = .
% = —[V.pw] -[V.7] ~Vp +pg
f
Rate of Rate of gainin Rate of gain in Pressure Gravitational
increase in momentum by  momentum by force on the force on the

momentum per convection per  viscous effects per element per element per

unit volume unit volume unit volume unit volume unit volume
(3.4-4)

This is a short form way of representing or a vectorial way of representing these equations
which we are more familiar with in terms of the components in various directions. This entire
set is compactly written in that one equation that we saw just before okay. See here you have
(P Vx Vx), (p Vy V), (p Vz V), (p Vx Vy), (p Vy W), (p Vz V), (p Vx V2), (p Viy V2), (p Vz V2). Therefore,
there are 9 terms here. Similarly there are t xx, T yx, T zxand so on 9 terms here okay.
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Vectorially,

0(;_:) =il - <B4 fy 34,4
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et in momentm — momentumby forceonthe  forceonthe

momentum byconvection ~~ viscouseffects  element  element

pruntvolume  perumtoume  peruntoume e untvolume - per it volume

And that this has been represented as V.p vv, this is neither a dot product nor a cross product
okay. This is a dot product yes, but vv what is this? This has been written this way to represent
these 9 terms here, right. So remember this, | will talk more about it. Similarly this t again
represented these nine terms here okay, this is called a tensor. A tensor is represented as this,
this as we had come to know is also a tensor. This is the second order tensor; this also is a
second order tensor. A vector, a column vector typically that we use or a row vector it is a first
order tensor okay, tensor is a more general term and these 2 were quite straightforward, V.p
and pg were quite straightforward. So let us talk a little bit more about these new vectorial
quantities or tensorial quantities that you have been introduced to as a part of this derivation,
let us begin with that.
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Let us look at equations 3.4-1, 3.4-2 and 3.4-3 again
We can recognize that 7 has 9 terms
vis 3 second order tensor with 9 components that can be represented by

z\'X TX y {U
=T Ty Ty See Appendix 1 for tensor algebra details
T Ty Tz

U1 is a new concept

It is neither a dot product nor a cross product

Look at equations 3.4. = 1 to 3 (first terms on the RHS) to understand that v has 9 terms
U1 is known as the ‘dyadic product’ and is a special form of second order tensor

A dyadic product of 2 vectors ¥ and W is

Py Uy Wy
pw = | Wy UyWy YWy | See Appendix 1 for dyad algebra details

VW Uy VW, '



So as we saw the shear stress has 9 terms, the shear stress tensor t squiggle hat has 9 terms. So
1 is the second order tensor with 9 components that can be represented as t tensor equals within
in a matrix form we typically write the components txx Txy Txz Tyx Tyy Tyz Tax Tzy Tzz OKay. Please

see the appendix 1 of your textbook for a nice development of this.

| have told you many things here itself, if some things are unclear please check the appendix.
As | mentioned earlier, vv is a new concept. There is no dot here, there is no cross here, right.
It is not a dot product, it is not a cross product, but this vv has resulted in 9 terms okay. So in
other words we have represented those 9 terms as v vector v vector written together okay, so
this is a new quantity, it is called the dyadic product and it is a special form of the second order

tensor.

For example, a dyadic product of 2 vectors v and w that is vxi + Vyj + Vzk and Wxi + Wyj + Wak. If
these are the vectors that are being considered, then vw the dyadic product is nothing but vywy
VxWy VxWz VyWx VyWy VyW; V2Wx VZ2Wy VW, 0Kay. So this is the representation of this, this rows
in our manipulations in our derivation and this is called a dyadic product, this is known as

dyadic product.

There are a couple of terms in Eq. 3.4-4 that could be new. A review of

Egs. 3.4-1, 3.4-2 and 3.4-3 will reveal that T has 9 terms. T is a second
order tensor with 9 components that can be represented by

See Appendix | for more on tensor algebra.

Similarly, vv is a new concept. Note that it is neither a dot product nor
a cross product. A review of Egs. 3.4-1 to 3.4-3 (first terms on the LHS)

will reveal that vv has 9 terms. vv is known as the ‘dyadic product’ and
is a special form of second order tensor. The dyadic product of two vectors

v oand w 1s
(v w R, v )
[viw, vowy  vow,
W :7 \'_\ 11'_\ ‘-’_\ 11’_\ ‘-'_\ H":_

\ ‘l’: W, ‘l': 11'_\ 1': H":_ )



Again, if you are unclear and for what algebra or what identities are valid for this and so on
and so forth, please check the appendix okay. You already know that you need to treat vectors
differently from tensors when they are written in a compact form. When you write the
components, they are just scalars okay. The components are scalars, so they are just numbers

that you can manipulate in the same way.

But when you compact them and write it up a vector form and you compact them and write it
up a tensor form, there is a certain algebra that goes along with it which needs to be consistent
with what you get when you expand those various components and do manipulations on those
components. So that is the reason why a simple algebra that you do with numbers may or may

not be valid for the vector algebra.

There is a separate algebra for vectors, and you need to pick that up. You would know, you
would have done some vector algebra as a part of your initial math course. The appendix 1
gives a complete set of manipulations as needed by us that is it, it is not comprehensive, as
needed by us whatever vector algebra is needed, tensor algebra is needed is given as actually
developed in that appendix, please go ahead and see that.
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Let us recall the general momentum balance equation (£q, 3.3, 1)
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Substitute the various terms for the x<irection, divide by dxdyd

And take the fimit as Ax, Ay,47 0 toget
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a o\ o

& w ey
Let us rewrite this equation, what is this equation? If you see here, this was equation 3.4. — 1
okay. So this is the momentum balance for the X momentum or momentum in the x direction,
the momentum rate in the x direction. So here we have as | mentioned earlier a product of 3

functions.



The product of which we need to take one at a time to be able to directly use it or it might be
much easier to directly use it, so let us simplify that and as you will see it gets simplified
significantly.
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let us write Eq. 3.4, - 1as
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The LHS can be expanded as
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Now, let us consider Eq. 3.4-1 written as

Ipv,) + (a(pv\ v Wpvyve) + %) ] ) _( A + oy, + It ] P +
ot dx a_\’ oz v a\_, & Pgy

dx

We are going to expand this term essentially as well as this term, this is a product of two
functions, this is the product of three functions. All of it is can vary, none of it is a constant,
we have not assumed any constancy of density or anything like that to make it generally

applicable because the gas the density can vary, right

The LHS can be expanded as

v, p v, dpv, v, dpv, dv, opv.
p—+v, —+|py,—4v, —4py, — 4y ——+pr. —— 4y, —=
ot 0 T ox 7 ox S dy T dy S odz Oz
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LR +y 4 ,
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Now, let us combine this in a slightly different fashion to effect some simplifications, a lot of
simplification happens. | am just keeping your Vx o= % here and combining p along with this

term okay. You see why | am doing this because % this is nothing but the substantial

derivative okay, density is outside here. So, let me combine this with this to write this as a

substantial derivative.

o ‘(au\ v, a‘.v:J ( p ap ’apl
—117 +pv, toa Ay v, BJJ

FV bV, v, SE RN
lor Tox Yoy o J “lodx  dy Iz
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oo (O, 9 0p) (ov, Oy, a»;j
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Using the equation of continuity E‘; -p (V 7)

the first term on the RHS of the previous equation can be written as the negative of the second term on the RHS. Thus,
z dv, v, Oy, dv, dv, dv, 8
F =y |=p—=4+==+=—=|[+p0 [ =+ =2 +—] =
7P\ % dy 0z Poe\ Bx

ax dy Oz
Thus, Eq.3.4.-1 can be written as
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The other two components {y and z) of momentum rate are expressed as above and added together, to get

Dy

P - IV . i] - V;) + pad £q.34.-5
Dt
mass Viscous forces on Pressure Gravitational
oo X accelaratton the element force on the force on the
per unit volume element element
per unit volume per unit volgme

4

Now, when we use the equation of continuity, the complete form. So the first term on, | think
that is the we are looking at the left hand side, the left hand side of the equation when we use
equal to whatever left hand side right hand side that is only side that we are looking at can be

written as a negative of the second term on the right hand side.



E (O, +a"'\- +81'_\] . (o, +81'\. . ov. ) 0
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Thus, Eq. 3.4-1 can be written as

Dv, {BTH ot BT_\] op
— A + - + A

x = -y
P Dt dx dy dz dx P&

And you have the right hand side of the original balance equation on the x direction momentum
balance and you could express the other components just by extension. If you do not believe
me, you can go back and re-derive the whole thing for the y-direction alone, for the z direction
alone you will find that you will end up as extensions of this you will have to write the

appropriate indices and you will be fine.

. - S

The other two components (y and z) of momentum rate can be similarly
expressed and added together, to get a 3-D representation

Dv ~ - .
p— = —|V.17] -Vp +pg
Dt
Mass ) Viscous Pressure Gravitational
x Acceleration ) i
Volume forces on force on force on
the element the element the element

per unit volume per unit volume per unit volume
(3.4-5)

Now if you use the equation of continuity, we can write the substantial derivative of

% = —p V.v that is what the equation of continuity tells us, general equation of continuity with

no assumptions here. So the first term on the right hand side can be written as the negative of

the second term on the right hand side okay.

So this is what our thing in the flower brackets was and this can be written as, this is the only
term that will remain here okay because this can be written as the negative of the second term,
the first term on the right hand side can be written as the negative of the second term on the
right hand side and therefore E becomes 0 okay. The E, first term is nothing but the negative
of the second term using the equation of continuity. I would like you to work this out and
convince yourself that this is indeed 0 and therefore your equation of motion in the x direction



becomes, | would like you to see tables 3.4 — 1 to 3, have | shown you that already? No | have

not shown you that, let me show you that.
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Dp s -
Using the equation of continuity ;)Lt ==p(V.7)

the first term on the RHS of the previous equation can be written as the negative of the second term on the RHS. Thus,

X dv, dv, dv, dv, Ov, dv,
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Thus, Eq.3.4.-1 can be written as

Dy, [0y, " aty, +()r“ ap
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The other two components {y and 2) of momentum rate are expressed as above and added together, to get

Dy

P = 7.4 - fp i pé £q.34.~5
mass Viscous forces on Pressure Gravitational
pr T X accelaration the element force on the e g the
per unit volume element element
See Tables 3.4. 1103 per unit volume per unit volume

(Refer Slide Time: 20:50)

TABLE3.4.-1 The

of motion in rec

gular Cartesian coordi

R

X direction:
vy v, vy v, dp [t Oy 01,
e Yy Uy o Y | o [ 2T T A1
p(()r G dy i dx \dx dy 0z Pl (A1)

For a Newtonian fluid with constont p and p.

dv, dve  dvy, vy p  [otv, v, Py,
P +, = +p R R U (A2)

=ttt - >+
o Tax Yay Yoz dx axt - dy! a2
Y direction:
av, dv, dv, vy dp [0ty 0t 0t (81)
b Uy o Y e e Bt ) =14 pg,
$ ( e tay Y)Yy T )T

For a Newtonian fluid with constant p and p:

So see here the equation of motion written and Cartesian coordinates, let us focus on Al, B1
and C1 for the time being okay. So this is the expanded form of the vectorial rotation that we
wrote. We have written it like this so that we can use it directly. We have vx vy v, we can use
this one directly okay. So note that A1, B1 and C1 gave us those 3 terms that we derived okay,
so that will come back to this in a little bit.
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Ifthe interest is in finding velocity distributions, we need to substitute the stresses in terms of velocity gradients
and fluid properties,

We need to realize that the simple relationship between shear steess and a single shear rate in the 20 form of
the Newton's law of viscosity,

[y
r'\"" R u d}l

was for an initial understanding

In 3:0, multiple velocity gradients would determine a shear stress

The equations given in Table 3.4, = 4 to 6 are the components of the stress tensor for a Newtonian fluid in

[aminar flow in the three coordinate systems are needed for a complete representation of the dependences

’

of shear stress on various shear rates,
Now, let us move forward. Let us do a few more things here, let us try to understand a few
more things here. Now using the equation of continuity which is I think this is what | showed
you earlier, yeah this is what we did earlier okay. We have this equation in terms of, of course
there is a velocity here, there is a shear stress, there is a pressure and there is gravity. Shear

stresses are not easy to measure okay.

So if you have a handle on shear stresses, then you could use this equation, very general
equation valid all the time okay. If you have only the velocities, then we need probably a
different form to be directly useful okay. So if our interest is in finding the velocity distribution,
we need to substitute the stresses in terms of the velocity gradients and fluid properties. You

already know how to do that.

We have the Newton's law of viscosity that gives us the relationship between shear stress and
shear rate. We looked at it in one dimension, we can extend it to 3 dimensions. So some
relationship between shear stress and shear rate is needed to convert the previous equation
which is in terms of the shear stress to an equation in terms of velocities okay. Of course that

would that would limit the applicability of the equation.

Once you use Newton's law of viscosity, the equation that you are going to derive will be
applicable only for Newtonian fluids, right, that is that goes without saying, whereas the first
equation is applicable for any kind of fluid okay, just remember that, but neutral fluids are so
widely used that it is very useful to have an equation for Newtonian fluids alone. So let us do
that.



This is the Newton’s law of viscosity Tyx = p(- ‘fi—”y") and this again was for an initial

understanding, this was only in 2 dimensions okay. As we can see there are contributions of
one to the other and so on and so forth. Therefore the velocity gradients in probably two
different velocity gradients could contribute to a particular shear stress and so on and so forth
this could happen and it is non-trivial.

There was a paper that was published a while ago that has actually worked this out for
Newtonian fluids and they have come up with certain relationships between the shear stresses
and shear rates. So this is only for an initial understanding, in 3 dimensions the multiple velocity
gradients would determine a shear stress as | just mentioned and equations given in table 3.4 —
4 to 6 are the components of the stress tensor for a Newtonian fluid in laminar flow in the three

coordinate systems.

Substituting the expressions from Table 3.4-4 in the momentum balances
for the three directions, we get

, A . (v o )
pD"‘— a[gua\‘_%u(vj)} (){M. d‘,\+ v, @

- + — .
Dt oOx dx dy| | dy  ox )
i i (3.4-6)
a[ (()1;4,61.-\ \}a}’)+ g
Jz Mk dx 0oz J ox P&,
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TABLE 3.4. -4 Components of the stress tensor for Newtonian fluids in rectangular Cartesian ¢
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Let us look at one coordinate system to understand that, | will show you that. Okay here, here

we go. See here let us just look at rectangular Cartesian coordinate system to begin with. You



can see that the shear stress tyx okay, this happens to be equal t«y, but this is actually a sum of
2 different velocity gradients in 3 dimensions. Similarly, it happens for the other shear stress

the third shear stress and the normal stresses are expressed in this complex form.

We are not going to get into why it happens this way, this is non-trivial therefore it is not a part
of an initial course. You can go to that paper and check how this is derived and so on and so
forth, it is non-trivial. Therefore, let us take it on face value for our purposes that txx is given
in terms of these velocity gradients, tyy is given in terms of these velocity gradients and tz; is
given in terms of these velocity gradients. So, this is the relationship between shear stress and
shear rates or the velocity gradients in a 3-dimensional case.

Table 3.4-4 Components of the stress tensor for Newtonian fluids in rectangular
Cartesian coordinates

d1 a\“l..
— - _ v )
Ty yx p ) o (A)
81“ N a\‘_ .
T =T = — -
e T TR ST (B)
T. =1 — (B\_+ o, } C
X ‘ Ix oz (<)
— " all.{ +Z all.{ al-‘ all_‘
. H dx 3 # dx dy 9z (D)
5 dv, N 2 (dv, v, 0
T =— 2 J— _—
e Y R S ®
T _" i+3 dl‘ al'\ +i
= - dz 3 Ldx dvy 9z (F)
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R ) ] pacy | 24— |- ()| - —+ £3.34.-8
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The above equations of motion Eq, 34.-6 to §,
equation of state, p = f{p), and
variation of y = flp)

completely determine the pressure, density and velocity components in a Newtonian fluid in laminar flow.

If we do this if we substitute these velocity gradients and write our equations of motion, then
we would get for the x momentum alone this relationship when you convert the shear stresses

in terms of the velocity gradients okay.

D'."\. ) ) ) v, 2 _
r_ 9 B ITREREI
"Di " ax { dy J}ay[ . dy BM( ‘]}
. 3.4-7
J o, ) op ( )
- H T 5 TP,
0z \ dz  dy J_ dy
Dv. 0 [ (ov. v\ ol (o, ov )
—~-:—u—--+,-J+—u. >+ —%
Dt ox| lox 9z /) dv| 0z dy J
o[, v, 2 9 A
o vy }_i
+8[Md" 3'( : a:+p“

The equations of motion (Eqgs. 3.4-6 to 3.4-8), equation of state, p = f(p),
and variation of U = f(p) completely determine the pressure, density and
velocity components in the flowing Newtonian fluid.

So, these would be the equations 3.4. — 6, 3.4. — 7, 3.4. — 8 for a Newtonian fluid because when
we looked at the relationship between shear stress and shear rates that limited to a Newtonian
fluid in this case, you could have different relationships for different fluids, so these equations
would be valid only for a Newtonian fluid. So, these above equations of motion, these are the

equations of motion.



And the equations of state are the relationship between pv and t or p as a function of a p and
the variation of viscosity with density completely determine the pressure, density, and velocity
components of a Newtonian fluid in laminar flow okay. Just remember this, this is for some
sort of a big picture, if you understand that it was fine, otherwise just keep it in your mind, at
some point in time this will become clear to you okay, much after you get into the field and so
on so, just remembers this.
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When p and L are constant, since Ti=0 according to the continuity equation, the equation of motion can be written as

Dy \
T uPHG = Fp + pg tq.34.-9

This Is the famous Navier - Stokes equation

If viscous effects are also not important, 7.7 = 0. Then, £q.3.4.=5 becomes

1) -
—==Pp+pp £q.34.-10
P Dt PTP8

This is called the Euler equation

When p and W are constant, since V.V =0 according to the continuity
equation, the equation of motion can be written as
v = T .
=uv> —Vp +pg (3.4-9)
Dt

Equation 3.4-9 is called the Navier-Stokes equation.

P

This is a nice equation, this is for a Newtonian fluid of course, not as general as the previous
equation but that is okay it is very useful. This is equation 3.4. — 9. This is the famous Navier-
Stokes equation. For a Newtonian fluid in laminar flow and so on and so forth that is, | mean
that is actually a limited equation, a very famous equation, aerospace people use it significantly
and so on and so forth, that equation is only a special form of the more general momentum

balance equation.

Now if the viscous effects are not important, then the V.t term can be put to zero 0 because the

shear stress is not going to come in at all okay. This is an idealized situation not a real situation,



idealized situation which becomes useful in many analyses and in such a case your equation of
motion becomes

If viscous effects are not important, V.%=0. Then, Eq. 3.4-5 becomes

p&:—?;_wpg (3.4-10)
Dt

Equation 3.4-10 is called the Euler equation.

So, these are 2 special equations that come out of the equation of motion for a Newtonian fluid.
Okay, I think before | take a break, let me show you the equations and also the complete set of
equations in this table okay. (Video Starts: 30:46) This will be available to you for download.
So please make a copy of the entire set of tables here and keep them as a part of your notes.
You have 3 equations of motion tables, 3.4. -1, I think 3.4. — 2 and 3.4. — 3.

Table 3.4-1 The equations of motion in rectangular Cartesian coordinates

x direction

(av‘ dv, o, av\} ap (ar“ ot ot
P 4 — |=—-0- =

e S U S N - = -
a0  ~dx T dy 0z dx dx dy dz

}-’-pg\. (A1)
For a Newtonian fluid with constant p and p
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v direction
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of & B I AL
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For a Newtonian fluid with constant p and p
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z direction
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For a Newtonian fluid with constant p and p
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Table 3.4-2 The equations of motion in cylindrical coordinates

7 direction
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Table 3.4-3 The equations of motion in spherical coordinates®

r direction
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The difference between these tables is the coordinate system, the first one is

for rectangular

Cartesian coordinates, the second one is for cylindrical coordinates, the third one is for



spherical coordinates. The equation of motion and these three coordinates in terms of the
individual components okay. For example if you have cylindrical coordinates, you will have r
theta z okay, r theta and z, and if you have spherical coordinates you will have r theta and phi

okay.

So, these equations are written in terms of those. The conversion has taken place already using
the principles that are given in the appendix and also as we saw earlier the 3.4 — 4 is the
components of the stress tensor for Newtonian fluids in Cartesian coordinates first and for

cylindrical coordinates next and for spherical coordinates. This you would not need too much.

However, you will need the first 3 tables 1, 2, and 3 of 3.4 (Video Ends: 32:14) and therefore
please make a copy of all the 6 tables and keep it as a part of your easy access folder okay,
keep it in your easy access folder, hard copy, soft copy whatever it is. So, let us finish up.
Today, we completed the discussion on the equation of motion derivation, the understanding

of the various terms and so on and so forth how they came about.

And we did that because the equation of motion is much easier to apply in many different
situations compared to shell balances for any situation, momentum rate in this case. In the next
class, 1 am going to show you the application of the equation of motion to various situations,
we will start in a few classes from now on over the next few classes | am going to show you

the various application okay. See you then.



Table 3.4-5 Components of the stress tensor for Newtonian fluids in cylindrical

coordinates
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Components for the stress tensor for Newtonian fluids in spherical coordinates(3.4-6):
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