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Lecture - 16
Unsteady-state Diffusion - continued

Welcome back. Let us resume the solution to the problem. There is a lot of intense
working in the last class to convert the partial differential equation into an ordinary
differential equation which can be solved more easily. That is one of the ways of solving
a partial differential equation, if you recall from your mathematics classes.
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So, this was the converted differential equation, the ordinary differential equation.

N 0'112 (2.5-7)

The boundary conditions get transformed to
n=0:0=1 (2.5-8)
n—>o06=0 (2.5-9)

With the converted boundary conditions in terms of the non-dimensional parameters.

We want to solve it in terms of non-dimensional parameter so that the solution becomes
applicable in general.



This is the, the problem that we are considering, the sorption of a surface modifying
agent from the liquid onto a surface, we are interested in the concentration profiles of

the surface modifying agent or the SMA in the liquid at various points in time.
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To solve this ODE, let us put u = o If it is ODE, you know how to solve this, is one

of the ways of doing it;
du d*®
n an
Therefore, Eq. 2.5-7 becomes
dn

Recognising that the above equation can be written as
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This cannot be integrated analytically, except by series expansion
' 2 4 6
2
o l_ﬂ n n n

o2 3!



So we got the solution of u. One of the ways of doing the solution is that you could use
a series expansion for this, okay. You all know what a series expansion for an
exponential function is. So series expansion converts it into additive terms. Then,

integration is quite straightforward. You do not have this complication here.

which, when integrated, yields
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So that is one way of doing it. I am going to show you two ways of doing it. And the
second way becomes a lot more general or it is nice to know the second way also. You
see that quite often. It leads to it leads you to a particular function that is used a lot of
times they are a function and so on. So, let me show you this.
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And | am more interested in this alternative route. So, this give you a solution. This
certainly gives you a solution, series expansion solution. However, there is an
alternative route that exists. To do that, I am going to go back a few steps. And we will

keep the integral signed for some steps because it becomes clearer. So, if you go back



a few steps, somewhere as shown below and start integrating that 1 mean and start

processing that.

We can get at the solution through another route; let us keep the integral
signs for a few more steps. Integration yields

0= C]jexp{— ‘r‘|2) dn+C, (a")
Applying the boundary conditions
n=0:0=1
n—>e0=0

we get
_ 2 p
| = Clj.exp(f n) dn\nzo +C, (b')

ozclj'exp(— W) dnl, . +C, )
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Now from here, if you eliminate C, subtract one equation from the other, I am

subtracting the first b from c¢. If | do that, | get



Eliminating C, from the above two equations, we get
-1=C {Iexp(— 112)({1]\]]_m —Iexp(— 112 ) dn\nzo}
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Since a series expansion provides
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You can write it as a definite integral. Then you know there is a sign change here,
because integral of zero to infinity. So, infinity minus that and there is a negative there.
So, you get that. And the above definite integral is of a standard form, okay. That is the
reason why we wanted to keep the integral and see. This integral is called an error

function.

And the values of the integral between the lower limit of zero and various upper limits
are available in error function tables that are found in mathematical handbooks and of
some of your mathematical textbooks even. You have the various values of this error

function. It is the value of the area under the curve from zero(lower limit) onwards.

And when evaluated by expanding the series or by using the error function.
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the series expansion can be substituted into the integral for evaluation. The
above definite integral, which is useful in many situations, is called the error
function. The values of the integral between a lower limit of 0, and various
upper limits, are available in standard mathematical tables. When the

expression is evaluated by expanding the series, or by using the error

" . .
function values, the value 7 1s got.

Thus. from Eq. (d")

(d’)



To make this equation consistent and applicable in general,

Eliminating C, from equation (a’) and (b’) gives
O-1= C] {J.SXP(— le ) dn‘n:l] N J.exp(_ nz) dn‘T]ZO}

M
e:1+clj’0 exp(—n2) dn

We need to differentiate between 1) in the limit on the integral in the equation
above, and the 7 in the integrand. The 1 in the integrand is a variable, which
can be replaced by another variable, say x, to give the same meaning. Thus

2 M2 rdm = 12 [Mexn( 2
6=1 \/Ej.oexp( n2)dn=1 \/Ej.oexp( ) dx

or
0=1-cerf (n)
6 = erfc (m)

We have replaced this variable n by the variable x to avoid the confusion with the limit

.
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And this is nothing but the error function of x. That we mentioned here.
B=1-erf (M)
06 = erfc (n)

where erfc (1) is the complementary error function which is defined as
I — erf (1). Replacing the non-dimensional variables with their dimensional
equivalents, we get

Now we can replace the non-dimensional variables by the actual variables for our case.
Therefore, this 6 was nothing but (ci - Co)/(Cs - Co). And this is the complimentary error
function of [z/V/4Dit], which is at n. If you plot this on our earlier graph, remember |
showed you this plot without these lines earlier. This is the concentration axis C; in the
solution. This is the z axis, z equals zero here. And at various times you get various
profiles and as time increases, the profile shifts from here to here to here. Note how do
you read this? This is the z axis. This is the concentration axis. So high on the
concentration axis means a large value of concentration. So somewhere here, it reaches

the highest concentration at a certain low time.

And then it drops to 0 at z equals 0. At a different time, which is beyond the initial time,
then this one becomes like this. At a third time, which is beyond the first two times, it
becomes like this and so on so forth. The time from where it starts decreasing goes on

increasing on the z axis scale.

.7{" —% —erfe|
=erfc
¢, —¢, [4D; 1 (2.5-10)

Thus, ¢; will vary as shown in Fig. 2.5-1.

The flux
- g . 06
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Now let us look at the flux which is what we need. Flux is again diffusive. There is no

X

motion of the liquid. There is therefore, the SMA flux is only diffusive. Therefore, you

could use Fick’s first law to get it J*;

G 7% =erfc __c
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Thus, ¢; will vary as shown in Fig. 2.5-1.
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And this is nothing but as we already seen, but the complementary error function of n

420 (2.5-11)

and that is a different integral.

And now we need to differentiate the 6 we need to differentiate with respect to n and
therefore, we are differentiating a definite integral and that is what we need to do to
find flux. So this is another aspect which is not trivial. This is a different concept

altogether. We are differentiating an integral.



However, if you recall your math course you would recall the Leibnitz rule which

provides us with a way of differentiating an integral. So, this can be found, this is what

the Leibnitz rule says.

The Leibnitz rule provides the means for differentiating an integral. It says

that if
' ar (1)
1) :_[ Flx1) dx
HI(I)

So, this is what our Leibnitz rule tells us.
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Thus, in this case, since
2 M )
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the derivative that is needed in Eq. 2.5-11 is
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According to the Leibnitz rule

e —2[m 9 ) 5 dn » d0
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Since the function inside the integral is not a function of 1), the first term
is zero, and the last term is zero. Thus

dn Jn

Atn:O

do
dn

n=0 \/E n=0 \/E

)
Jo = =) (2.5-12)
T

Dag is nothing but D; itself. This is sometimes used in a binary system. We do not have

Therefore, the flux

to worry about this too much. | am going to use this Dag , D, D i effective in the same
sense and you think is that it is a slightly different situation, therefore I call it D i effective
and so on. So, all these are interchangeably used in this course. So please do not get
confused. So Dag is the same as D; in equation 2.5-12. So, we got an expression for the
flux that was required when the surface modifying agent is being adsorbed onto a

surface from a stationary liquid.

This had quite a bit of intense mathematics, but that is required as a part of this course.
And that was a prerequisite. The mathematics, engineering mathematics was a
prerequisite for this course. But do not worry about it. | have given you every single
step here. In most books, you do not have these individual steps, therefore it is difficult
to follow. And that kind of puts off many students.

That is the reason why | have spent time to show you most of these steps till a certain
basal point. Beyond that you need to work out yourself. Okay. Let us stop here. And

when we meet in the next class, we will take things forward. See you then.



