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Lecture - 14
Steady-state Diffusion with Reaction

Welcome back. Today we will look at slightly more complicated situation, okay. Steady
state radial diffusion in spherical particles but we will add a reaction there okay. And
this situation finds very many different applications as you can yourself see when we
go through the actual situation. In fact, one of the applications is being presented as a
problem here for us to consider. So steady state radial diffusion in spherical pellets with
reaction.
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So to do that to understand this let us consider doing this problem. Let us consider an
enzyme reaction for which the enzyme is immobilized on a porous spherical pellet. The
pores could have a high surface area that is say approximately 250 m?/g is very standard

in these situations, high huge surface area, one gram of the substance has 250 m?.

The pellet itself is placed in a fluid environment. Since the enzyme is immobilized
inside the pores of the pellet, the transfer of substance to the site of the immobilized
enzyme through the pores and the transport of product out of the pores are expected to
play a major role in determining process kinetics, okay. So the substrate needs to get to

the place of the enzyme, it is in the pores, it needs to get there.



And then there the reaction happens. It gets converted to a product. It needs to get out,
the product needs to get out of the pores back to the surface and so on so forth. So both
those are expected to play a role here. Thus, the transport inside the pores needs to be
considered rather than the transport to and fro from the surface of the pellet. We are

interested in the transport inside the pores.

We are not so much worried about how the transport, it is in a fluid environment and
the substrate is in the fluid and how it transfers from the bulk of the fluid to the surface
is not much of our interest. The other process, how it goes from the surface through

the pores to the site of the enzyme that is more our interest here.

What you are asked to do is derive an expression for something called an effectiveness
factor which gives a measure of how much the reaction is hindered due to
immobilization, okay. Suppose you had the enzyme free in a fluid, how quickly it reacts.
That there is a certain process kinetics associated with, the process speed associated
with it. By immobilizing that on to the pores in the in a certain pellet here, how much

does it get hindered?

By how much does the process rate decrease is a very important thing to know while
working with immobilized enzymes okay. So this is a, this is a direct application. Very
many different applications immobilized enzymes are used in so many different
processes by processes across the world to produce products with billions of dollars a
year and so on so forth.

And therefore, this is all depend on whatever we are going to look at in this particular
analysis. In fact, people need to analyze this and then understand this and then design
the various aspects of their bio reactors to optimize their production. Okay, let us start
looking at this.
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Spherical geometry therefore, we will use spherical coordinates. In this case, we are
interested in the processes that happen inside the sphere into which the enzyme is
immobilized itself. We are not worried about what happens outside. This system,
therefore is a spherical pellet, and let us do a material balance on the substrate. The
concentration of the substrate is s over this system.

You know what to do now. We go to, it is a spherical coordinate system. Go to table
2.3.2-1 to do the material balance. Pick out equation C2 because the concentration, total
concentration and the diffusivity are constants. And that is the reason why we are
picking C2 over C1. And if you do that, we have already seen this equation earlier. Let

us not go, let me not go through term by term again.

So this is the equation C2, which is the material balance equation and we are doing the
material balance on the substrate here, okay. So the ci is nothing but s as we know. No
ci, the concentration of the substrate in the liquid is s, is some s. Let us see how we are

going to do that. It is going to be c; or s we will see. I think we switch to s and see.

So if you look at the terms that are relevant here, it is a steady state analysis. That is
what we have decided to do. Most processes are at steady state for most of the time
okay except for batch processes. The steady state analysis can be used to make sense of
many different situations. The therefore this goes to 0. There is no variation with respect

to time.



There is no bulk fluid motion. There is no convective fluid motion that is and therefore
Vi, Vo, Ve are 0. This of course remains. There is angular symmetry and therefore there
IS no variation with 6. 0 is this angle. There is no variation with ¢ which is this angle.
And of course, there is a reaction that is happening here, okay. So the only difference
between the earlier case in the growth factor, and this case is this reaction term R;,

okay.

For the enzyme catalyzed reaction, the Michaelis Menten equation is a very good first
approximation, we all know this from the various courses that we have done. And also
r is the only variable and therefore, we can replace the partial derivatives with the total
derivatives. So if we do that, we get, | am going to replace the i with the effective for
the pores and so on so forth. Of course, | am using V’max and K’m in the place of Vimax
and kmax. That is only because when we immobilize things, the parameter when we
immobilize enzymes, the parameters could change or they normally change. And
therefore, the vmax in solution may not be equal to the vmax when it is immobilized. And
therefore, to differentiate that | am using this > here. Des is the effective diffusivity. And
if I expand this, it is not equal to zero. So | cannot take this to be constant and so on.

Therefore, 1 will have to expand this.
You do the differentiation, term by term using the product rule. And then there is riz

term. So sum of those terms will cancel and finally, you will get this. So please work
things out, pause the video here work things out if you are not clear, okay. Each one of
these mathematical steps that | have shown, | have tried to make them as detailed as

possible. But you will have to draw a line somewhere.

5
d°s 2ds
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K,’H +s

5

Dy (2.4.3.1-1)

2
dr= 1 dr

If you feel uncomfortable, then stop and work step by step. I am sure if you do that, you
will feel lot more comfortable. You do not have to take things at face value. No, you
know exactly how things come about and that you know, that improves the confidence
significantly. It is no longer some black box kind of a thing. Let us call this equation
2.4.3.1-1.
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For writing the boundary conditions, let us consider the following. We have radial

symmetry, okay. And when we model something that has to reflect some key aspects
of reality. Otherwise, there is no point right? The we have radial symmetry and therefore
whether you approach using this radius, this radius, this radius, this radius, you should
reach the same condition at the center, okay?

So that is physical reality. It is a single pellet. How you traverse and because there is
spherical symmetry, the concentration of something at the center has to be the same
irrespective of the direction of traversing. So the substrate concentration at the center
must be the same value irrespective of the radial direction followed to approach it. And

this is physical, this is mandated by physical reality.

So in other words there cannot be a discontinuity. If you approach here it is some s and
if you approach here it is some s’ that cannot be the case. Therefore, there cannot be a
discontinuity in the substrate concentration at the center irrespective of the radial
direction of approach. And the only way in which this can happen is that the
concentration at the center either goes through a maximum or a minimum of the profile,

okay.

In this case it will be a minimum because there is a continuous decrease, it could be a
maximum. | mean mathematically speaking, the derivative needs to go to zero.

Physically speaking the concentration needs to be either a maximum or a minimum at



that point for reality to be valid, okay? So the only way this can happen is that if the

derivative of the substrate concentration at the center is zero.

Think about this. If you are unclear about this, send me an email. We will discuss more
and I will try to clarify this better. Therefore, at r equals R, the derivative of the substrate
concentration with respect to radius has to be zero. This of course, is the condition for
the maxima as you all know or one of the conditions for the maxima or minima, extrema

let us say.

Boundary conditions:

At f':0.£:0 (2.4.3.1-2)
dr

r=R S=S§, (2.4.3.1-3)
And the above equation which is this needs to be solved with those boundary conditions
to get at the particular solution. If you do that we will get the variation of the substrate

concentration with radius.

And that is what we are after. What we are going to do is | am going to use this
opportunity to introduce to you a slightly different way of solving which makes the
solution a lot more general by the way we get the solution itself okay. We are going to
use something called non-dimensional parameter. So whether it is a pellet of this size,
or a pellet of this size, or a pellet of this size, it does not make a difference in the solution
that we get.

The solution is better in general for any size just by looking at it. You do not have even
have to substitute various things and see. Just by looking at it that becomes valid. And
that can be achieved by the use of non-dimensional variables. We look at non-
dimensional variables from a slightly different context later in the course. But let me

introduce the non-dimensional variables.

As the name implies non-dimensional variables do not have a dimension, okay. So there
is a non-dimensional variable for distance. There is a non-dimensional variable for other

things and so on so forth. Okay, let us look at this. Before solving this, we are going to



convert the equation in terms of non-dimensional variables and solve it. And thereby

the solution becomes general.

We just have to finally substitute the actual values of a system to get the particular
solution that is all. And the solution in terms of the non-dimensional variables
themselves is applicable in general. It is not dependent on the particular radius and
things like that.
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Let us define the needed non-dimensional variables as

x=— (2.4.3.1-4)

(2.4.3.1-5)

Now we will have to convert the previous equations in terms of our non-dimensional
variables, okay. This is going to take some work and so please be with me. So this is

what we are trying to do. We are trying to write the earlier equations in terms of x and
y which are non-dimensional variables and lot of math is coming up. So what is % in

terms of our non-dimensional variables? That is one of the things that we have earlier.
So this is the standard, this you recall from your earliest math course, engineering

mathematics course
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Stop the video if you are not comfortable with this. Go back, substitute the various

things. Convince yourself that this is indeed the case, okay? Then restart the video.
(Refer Slide Time: 18:10)
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Thus, the differential equation becomes

s dx 2 s dx V.S X
—Def{ o £ Y, #“}—7‘““ 0 (2.4.3.1-6)
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Dividing throughout by 2 we get
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(2.4.3.1-7)

Similar to non-dimensional quantities mentioned earlier in this section, one
can think of non-dimensional parameters, which are useful for analysis, as
will become apparent later. Let us define some non-dimensional parameters,
as follows:

. So we have this. Now we have it of a form that you are comfortable with or you are
already familiar with from your mathematics courses. Before we proceed further,
remember we are looking at the effect of this factor. Therefore, let us do something
here.

Now let us define a couple of non-dimensional parameters. And we will talk about the
utility of them much more later. We will talk about it a little bit now also at the end of
this. Let us define something called a Thiele modulus, which is designated as capital

MrT as a reaction rate divided by a diffusion rate, okay.

Remember, this is an immobilized situation. In the free situation of course, the rates are
going to be much higher, because the immobilized situation is limited by the transport
of both the reactant and the product, reactant to the site of the reaction and product away
from the site of the reaction. And therefore, we would like to compare the pure reaction

rate with a pure diffusion rate.



’ el , .
k K, J a ' reaction rate

M, = = — = Thiele modulus ~ (2.4.3.1-8)
R D s, 'a' diffusion rate
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m
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When 5, << K,’“, the reaction rate is of first order. Thus, B: ”, accounts

m
for deviation from first order kinetics. For larger values of P, the reaction
is of zero order, and for smaller values of P, the reaction is of first order.

Therefore, this is called a Thiele modulus. This is a standard modulus that is used if you
look at heterogeneous reactions. And therefore, let us define this Thiele modulus for
our situation. The reaction rate is first order when so is much less than k’m. You know
this. So you take a look at the Michaelis Menten equation and recall this situation. And
that is being reflected by this  here. And that is the reason why we have taken so/k’m
as different parameter here B, which accounts for the deviation from the first order
kinetics. You can view that as providing as with how much it deviates from the first
order kinetics. For large values of  of course, the reaction is zero order, it does not
depend on the concentration at all. And for small values of B, the reaction is first order
because it is going to depend on So.
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Okay. In terms of these non-dimensional variables and parameters, you could write the

equation that we had earlier as



Thus, Eq. 2.4.3.1-7 can be written as

2
d“x 2 dx

2 X
—t——=—9M;— :
& ydy My [+ Pr (2.4.3.1-10)
Boundary conditions:
Aty=1.x=1 (2.4.3.1-11)
o
Aty=0, & =0 (2.4.3.1-12)

dv

Solving the differential equation, we can get x vs y (or) s vs r.

And the boundary conditions are, you know earlier we saw the boundary conditions
that at the surface the concentration is the concentration of the liquid and at the center
the derivative must be zero, right for continuity.

Therefore, we have completely converted our differential equation as well as the
boundary condition in terms of the non-dimensional variables, x and y. Recall what x
and y are. If you are unclear, go back and check and then it will be clear to you. Just
number the equations for the boundary conditions. Now if | substitute this solution, or
rather the solution of this equation of this differential equation would give us the

variation of x with y.

And we know what x is we know what y is, and therefore, it will give us the variation
of s with r. I am going to leave it at that | am not going to take it forward. You can solve
it. You can plot x versus y and then you can use some typical values of the radius of the
pellet and so on so forth substrate concentration. See how things vary. Please do that.

That will give you an insight. The usual interest, as well as the problem need is knowing
how much the reaction is hindered due to immobilization. And that is the effectiveness
factor. So the effectiveness factor is a measure that gives us the hindrance. And we are
going to define the effectiveness factor as the actual reaction rate and with all these
hindrances, what the reaction rate is divided by the reaction rate in the absence of mass

transfer resistance.

Suppose there has been no mass transfer resistance, hypothetical situation there is no
mass transfer resistance. What happened? What is the rate at that thing that would be



the maximum. And the actual reaction rate is what actually happens with all the
processes, the diffusion, the mass transfer and so on so forth included. So what is the
ratio? How much is it getting hindered by because of the mobilization is given by this
effectiveness factor.

So let us get an expression for the effectiveness factor. That is what is needed in the
problem. Let us do that.
(Refer Slide Time: 26:00)
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So the actual rate I am calling it vac is to find that out. Let us consider this. This is a
steady state situation okay. Steady state means at a certain point of interest, the variables
of interest should not change with time okay. Therefore, there should be no mass

accumulation at the surface of the pellet. If it accumulates it is changing with time.

If the substrate accumulates or mass accumulates at the surface, mass at the surface is
changing with time. That is not allowed at steady state. And therefore, there should be
no mass accumulation at the surface. This in turn means that whatever substrate is
entering the surface needs to be consumed in the pellet for the steady state to be valid.

If that is not happening, the steady state is no longer valid, okay.

So if we look at the rate of entry through diffusion as given by Fick’s first law. We
multiply it by the surface area of the particle Ap to get the diffusion rate from the flux
rate. And in spherical geometry if you recall, the positive r direction is from the inside
to the outside.



Here the substrate is entering from the outside to the inside, okay. Just in the negative
r direction. And therefore, we include a -1 here to indicate that direction. So the rate of
entry is Fick’s first law at r equals R times Ap times -1. Yeah -1 because the outward

radial direction is taken as positive, S entry is in the negative r direction.

We are usually more interested in determining how much the reaction
is hindered due to immobilisation. To find this out, let us define an
effectiveness factor that gives us a measure of the hindrance, and evaluate
the same.

An effectiveness factor can be defined as

- Actual reaction rate

o
&

Reaction rate in the absence of mass transfer resistance

Actual rate v__: At steady state, there should be no accumulation of substrate
or product at the surface. Thus, whatever substrate enters, needs to be
consumed in the pellet for steady state to be valid.

Rate of entry =— D g {fh =DA,
dr

"lr=r
Since the by steady state requirement, the rate of entry must equal the rate at which it
is being consumed in the pellet. The actual rate must equal the rate of entry, as given
here. The negative and negative cancel out. | have written it in terms of the non-
dimensional variables, times A, must equal the actual rate, the rate at which it is getting

consumed inside the pellet.
Rate of entry = Deff g |r=R Ap

Now, to write it in terms of volumetric basis, we divide it by the volume here. We get
the volume or moles per time basis we divide it by the volume to get the volume. And
that both are 1 mean the A, is the surface area of the sphere. V, is the volume of the
sphere. Surface area of the sphere is 4nR2. Volume is (4/3)nR3. And therefore, your

actual rate turns out to be,

On a volumetric basis

. _ S“ dX A‘p . Deffs“ '-hTRz dA\’
act — Meff —, Y b A -
R v, V, R 4 RGN
3
s, dx
Vaer =3 Desr oy 1 (2.4.3.1-13)




Okay, we have been at it for a while. This is a slightly involved thing, it does not matter.
Let us spend some time on this. One of the lectures being a little longer is fine. If you
want you can take a break. You can pause it, come back, take a look.
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The reaction rate in the absence of the mass transfer resistance is the
reaction rate if the concentration of the substrate is s . Since there is no
hindrance (resistance) to the mass transport, the substrate concentration in
this hypothetical situation would be the same as that at the surface of the
spherical pellet.

v ;ux So

K +s,

(2.4.3.1-14)

Reaction rate in the absence of mass transfer resistance =

If there is no mass transfer resistance, then the entire insight would have a concentration
of so of the substrate. That is not happening here. And or that is the situation that we are
looking at as this situation a hypothetical situation that arises in the absence of mass
transfer resistance. Since there is no hindrance or resistance to mass transport, the
substrate concentration in this hypothetical situation would be the same as that at the

surface of the pellet as I just mentioned.

The Michaelis Menten rate with the substrate concentration being the surface substrate
concentration. And from these two equations, we get the effectiveness factor which is
the actual rate divided by the reaction rate in the absence of the mass transfer resistance.
The actual rate is this. The reaction rate and the absence of mass transfer resistance is

this. The entire enzyme, the entire pellet being at So.



Thus, from the previous two equations
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So we have the effectiveness factor, we needed an expression for the effectiveness

factor is Z—i at y equals 1 divided by this is nothing but your Thiele modulus Mt apart

from this 3 here. We will call this equation 2.4.3.1-15. | think this is what we are looking
for in the problem here. The effectiveness factor in this given situation. Here we had a
spherical geometry with reaction happening. | hope you got an idea as to how to apply
these material balance expressions to arrive at very useful insights into the system and
thereby use those insights for design and operation later.

Let us stop here for this class. When we come back, we will take things forward. See

you then.



