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Welcome back, in one of the earlier classes I said there are 2 approaches to solve these problems 

one was the shell balance approach that we saw in the previous class. Then this class we are going 

to see the conservation equation approach. The conservation equations that we have seen now is 

the continuity equation the mass conservation equation and we are going to apply it directly to get 

whatever we need. 

 

I will tell you the reasons for doing that is much easier way of doing it although it has some 

limitations it could have some limitations. 
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They shell balance approach is intuitive it gives you a very nice feel of what is going on, a physical 

feel of what is going on understanding is clear however it is a little cumbersome. The continuity 

equation approach overcomes that difficulty, that is the reason why we are looking at this. As I 

said the shell balances could become cumbersome for complex situations, here it was I took a 

simple case it was cuboid. 

 

So, nice and easy dimensions to work with, are intuitive from an intuitive point of view because 

we are used to that. Suppose your system becomes a shellular and you will have to do balances 

over a differential shell with a cylindrical in shape. Then things become a little more complex, you 

take a spherical system, you have spheres let us say. And you take a spherical system then it will 

have to do balances over a spherical shell that can become even more difficult. 

 

Let me say it could involve a lot more effort, it is not difficult but it would involve a lot more effort 

and for this reason or it becomes cumbersome. So, we look at this other approach which is 

reasonably general called the conservation equation approach. And of course this you can just 

apply the equation therefore it does not have that difficulty or the visualization is a lot less in this. 

 

So, let us first derive the continuity equation or the mass conservation equation for a species in a 

multi species system. The earlier continuity equation that we derived was for what, you go back 

and check, pause the video here go back and check and let me know, why are we deriving the 



continuity equation again here, we have already done that. So, what is the difference between this 

and that, can you go back and check. 

 

If you checked you would have found that this the earlier one was for a single species system or 

the total mass of multi component system. Here we are going to look at a species in a multi species 

system. This will make it applicable more generally and therefore we need to do this and this is 

different from the earlier expression and therefore we need to do this. The earlier continuity 

equation, this is nice to see many times therefore I am just writing both forms. 

 

This is in terms of the derivative the regular derivative, partial derivative 
𝜕ρ

𝜕𝑡
 = – 𝛁 .(ρ v). And in 

terms of the substantial derivative it is - ρ times ∆v nothing is constant here and so on in other 

words ρ is not a constant here. This is the continuity equation that we already seen, this is for a 

single component system or total mass. 
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For now we are looking at a species in a multi component system. So, let us consider a multi 

component mixture flowing through a cuboidal element ∆x ∆y ∆z the same system as we saw 

earlier fixed in space. So, it is this, you have the x coordinate here, the y coordinate here, right 

handed coordinate system therefore this is the z. And this is the cuboidal element of thickness ∆x 

∆y and ∆z. 



 

And therefore this point turns out to be x + ∆x, y + ∆y and z + ∆z here. So, this is our control 

volume or the system control volume fixed volume and space through which a multi component 

mixture is flowing in three dimensions. Enters in the x direction, it enters the face at x leaves or 

the face at x + ∆x, y direction it enters at the face at y as in this direction. 

 

So, it enters the face at y which is this leaves at the face y + ∆y which is that and in the z direction 

it enters at the face at z here and leaves at a face located at z + ∆z which is this. So, this is the mass 

conservation equation 
𝑑m

𝑑𝑡
 = you have input rate - output rate + generation rate - consumption rate. 

This is a single species, so you could have generation, you could have consumption through 

appropriate reactions that happen. 

 

Therefore all the terms are relevant here, earlier if you recall we did not consider generation and 

consumption because it was a single species nothing else going to happen to it or it was the total 

mass even in the case of total mass, there is no generation or consumption and therefore we did 

not consider these 2 terms earlier. 
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For a species i in a multi component mixture, 
𝜕m

𝜕𝑡
 which is the mass of i with respect to t, this is 

mass, mass is nothing but density times volume. So, density of i times the volume of the system is 



∆x, ∆y and ∆z, it is a cuboid right. So, density times volume as mass and we have written in terms 

of density and volume, n is or ni is a vector. And therefore ni is nothing but in ix+jn iy+kn iz. 

 

So, nix is the flux in the x direction, niy is the flux in the y direction, niz is the flux in the z direction, 

components of the total of the flux ni which happens to be a vector. So, input rate of i at x is nothing 

but the mass flux of i at x times the area because we need mass rate, flux times the area is the rate. 

And therefore mass flux times the area, what is the area again, this to recall, this is the x direction, 

this is the phase at which it enters the phase, area is nothing but ∆y∆z and therefore we have the 

flux times(ni) ∆y∆z. 

 

Similarly the rate of the species i, leaving at the phase x + ∆x is nothing but the flux of i in the x 

direction. At the phase located at x + ∆x times ∆y∆z, I hope you get the trend the way of writing 

this. We are looking at mass per time and we have fluxes, we have multiplied by the area to get 

rate. 

 

Can you write now similar expression for the input rate at of i at y and the output rate of i at y + 

∆y also do that for a z . Pause the video here, write those and then compare with whatever is being 

talked about go ahead please. The input rate of i at the phase located at y is n iy the flux of i at y at 

the phase located at y, this is the y direction, this is the phase located at y times the area  which is 

∆x ∆z this is y direction. 

 

Similarly the rate output from the phase located at y + ∆y is n iy in the y direction, the flux of i in 

the y direction output from the phase located at y + ∆y times the same area ∆x ∆z. And hopefully 

you would have also gotten the z direction which is the input rate of i at z in terms of the flux of i 

in the z direction at the phase located at z times the area, the z area is ∆x ∆y. 

 

And similarly, for output you have output rate of i at the phase z + ∆z is the flux of i in the z 

direction at the phase z + ∆x times ∆x ∆y. So, we have, what are we trying to do, we are trying to 

mass balance we had input rate, the output rate, generation rate, consumption rate. So, we have 

written the terms that will contribute to the input rate here, we have written the terms that will 

contribute to the output rate here, what is leftover. 



 

Go back to the equation and find out, the rg - rc we will consider that together here net production 

rate. It is nothing but the reaction rate, to the reaction rate is typically in terms of mole per volume 

per time. Therefore, mole per volume times the molecular mass which will give you a mass per 

volume per time, times the volume will give you mass per time. So, this we had done earlier and 

we are doing the same thing here. 

 

We want every term in that mass balance equation here in terms of mass per time. Our  

measurements are in terms of other quantities or usual measurements are in terms of other 

quantities, moles per volume per time, and therefore we are converting it into mass per time, so 

this is the net production rate. Now we put all these things input, output, r g – r c into our mass 

balance equation which happens to be this 
𝑑m

𝑑𝑡
= ri - ro + rg - rc is what do you get, you get an 

expression. 
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And if you divide throughout by the volume element ∆x ∆y ∆z and take the limit as ∆x tends to 0, 

∆y tends to 0, ∆z tends to 0 you get this. We have seen the details already a couple of times, so I 

am not letting you work through the details, if you want you can do that to feel comfortable if you 

could do this. You can of course see here you know you have these various things input - output 

then you put that into that expression divided throughout by ∆x ∆y ∆z. 

 



 

 

And so the terms that remain will form the expression for the derivative when the limit is taken as 

we saw earlier. And therefore, the mass balance equation would become  

 
𝝏𝛒𝒊

𝝏𝒕
 + (

𝝏𝐧𝒊𝒙

𝝏𝒙
+ 

𝝏𝐧𝒊𝒚

𝝏𝒚
 + 

𝝏𝐧𝒊𝒛

𝝏𝒛
) = Ri(M.W)    2.3.2-1 (the volumetric basis rate times the molecular mass 

of i)   

 

Vectorially, vector notation helps us write things in a compact fashion we can write this as 
𝜕ρ𝑖

𝜕𝑡
. 

This is nothing but you could recall 𝛁.ni you could write down the individual terms take the dot 

product and see that it is actually reducing down to this, 

  
𝝏𝛒𝒊

𝝏𝒕
 + (𝛁.ni)  = Ri  (M.W)                           2.3.2 - 2. 



 

 

Now, if we divide throughout by the molecular mass(MW), you know density divided by the 

molecular mass density is mass per volume. So, mass by molecular mass will turn out to be moles, 

moles per volume is concentration. i.e. 

𝝏𝛒𝒊
𝝏𝒕

𝑴𝑾
=

𝝏𝐜𝒊

𝝏𝒕
  

So, 
𝝏𝒄𝒊

𝝏𝒕
 +(𝛁.Ni)  = Ri                             2.3.2-3 

(ni is mass flux, mass flux divided by the molecular mass is mole flux Ni).  
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Now let us begin with this 
𝝏𝛒𝒊

𝝏𝒕
 + (𝛁.ni) = Ri (M.W)                               2.3.2 - 2.  



We have already seen that this expression in a few classes earlier - ρ Di 𝛁wi = ni – wi nT, this is 

only general expression. Substituting ni from this ni is nothing but wi nT - ρ Di 𝛁wi this if you 

substitute here (on equation 2.3.2-2) we are going to get what are you going to get, why do not you 

substitute and tell me, yeah it is a good thing to do it interactively you will pick up much more, 

pause the video here, go back do this substitute for ni, from this expression on to this expression, 

tell me what you get, go ahead please. Hopefully you got 

 
𝝏𝛒𝒊

𝝏𝒕
 + 𝛁.(w i nT - ρ Di𝛁w i ) = Ri(MWi)               2.3.2 - 4  

 

And by definition  nT is nothing but ρ v alright that is flux is nothing but density times velocity, 

that is what we saw in the very beginning. Therefore w i nT this term as w i (ρ v) and wi is the mass 

fraction, ρ is the total density. Therefore, total density times mass fraction is the density of i, so 

this becomes ρiv. And therefore, this equation can be written as 

 

 
𝝏𝛒𝒊

𝝏𝒕
+ 𝛁. [(ρi v) - ρDi 𝛁wi] = Ri(MWi)            2.3.2 - 5.  

 

We are doing all this to set things up, so it is nice the way it is falling into place. We are deriving 

the equation the continuity equation that can be directly applied to solve problems. So, we are 

trying to do it as gently as possible, so that this would be applicable to a wide variety of situations. 
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If you reorder this equation you know take the various terms you know the side, this is ∇.ρi times 

v, ρi is not a constant here. And therefore this is product of 2 functions, so we are taking the 

derivative in three dimensions therefore it is first function derivative of the second function + 

second function to the derivative of the first function and so on will turn out here. 

 

And therefore we get that is the next step I have just split it up here 

 
𝜕ρ𝑖

𝜕𝑡
+ 𝛁. (ρi v) - 𝛁. (ρ Di 𝛁) wi = R i (MWi)                    2.3.2-6 

I have just expand just taking the derivative explicitly. These were together earlier I have separated 

out the terms. And here you could write this as  

𝜕ρ𝑖

𝜕𝑡
+ 𝛁. (ρi v) – 𝛁 .(Di 𝛁 ρi ) = R i (MWi)                        2.3.2-7 

As ρ. wi = ρi                                                                     

And now I am expanding, this is the product of 2 functions as I mentioned earlier they were 

derivative would be first function ρi times the derivative of the second function + the second 

function v times the derivative of the first function essentially split this up, the rest remain the 

same.   

  
𝝏𝛒𝒊

𝝏𝒕
+ 𝛒𝐢 𝛁. (v) +𝐯 𝛁. (ρi)  – 𝛁 .(Di 𝛁 ρi ) = R i (MWi)                     2.3.2-8 

 

And now if we impose the condition till here it is very general we did not assume anything. Now 

if we impose the condition that the total density and the diffusivity of i are constants which is 

applicable in a wide variety of cases. If the density is a constant then we know that the equation of 

continuity reduces to (𝛁.v) = 0 right this we already seen. So, if ρ and Di are constants, this term 

will drop out 𝛁 v = 0. Therefore this equation reduces to under these conditions. 

 

Now we have conditions ρ and Di are constants and (𝛁.v) = 0 

 
𝝏𝛒𝒊

𝝏𝒕
+ v.𝛁.ρi – Di  𝛁𝟐. 𝛒𝐢 = Ri(MWi)                       2.3.2 - 9. 

(  ∇2=
𝜕2

𝜕𝑥2
 + 

𝜕2

𝜕𝑦2
+ 

𝜕2

𝜕𝑧2
). If you are uncomfortable with it, just go and check the appendix in the 

book, it would give you how those things come about. 

 



And now if we divide throughout by the molecular mass, we get this density divided by the 

molecular mass is concentration. (Video Starts: 20:46) Let us get just write here can take care of 

this little later. (Video Ends: 21:19) So, we are dividing by the molecular mass, so that term should 

not be there and this equation 2.3.2 - 10, let me go to the full screen mode. 

𝝏𝐜𝒊

𝝏𝒕
+ (v.𝛁c) – Di  𝛁𝟐. 𝐜= Ri                   2.3.2 - 10. 
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This equation can be use to get concentration profiles and that turns out to be very useful as you 

will realize as we go through the various examples and you work out the various exercises. So, 

this equation is applicable if the density and the diffusivity are constants, this equation is 

applicable in general, so remember this, here of course the v is the fluid velocity. 

So, here I have a set of tables which give you first in the equation of continuity for a species i in a 

multi component mixture. In general terms and when c and Di are constant or ρ and Di are constant 

both are the same. And c and Di are constant it reduces to this easier to use in many different 

situations. So, the general case is ai which is a little difficult to use because it is in terms of the 

molar fluxes difficult to measure. Whereas here this is in terms of c and diffusivity and velocities 

which are much easier to measure. 
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So, that is what the table consists of first for a rectangular coordinates then cylindrical coordinates, 

conversion has happened non trivial conversion is happened from rectangular to cylindrical. 
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And then in spherical coordinates and as mentioned earlier I would like you to make a copy either 

a hard copy or a soft copy of table 2.3.2 - 1 which is in these three tables consisting of equations 

A1, A2, B1, B2 and C1, C2 . And keep it aside at a place where you can easily refer to, we are 

going to use these equations very often. 
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Now let us solve the same problem that we did using shell balances earlier we are remember shell 

balance is we had written at representative shell or we had considered as a representative shell. We 

had written our material balance over the representative shell and come up with useful expressions 

Earlier the problem that we did with the shell balance method was the diffusion of species i through 

a membrane which again has various applications it could be a shell membrane it could be various 

other membranes that we use and biological engineering. 

 

So, whatever we did using shell balances let us do using the conservation equation, you will see 

that it happens in one step. So, we will consider the Cartesian coordinate system because this 

happens to be the system that best fits the geometry of the membrane. And let us choose that 

equation and cancel the terms that are not applicable. In this case when we consider C or ρ and D 

to be constants then we could use equation B from table 2.3.2 - 1 which is this. 
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Refer the above figure: 

Yeah, I think it is A2, I need to convert it to A2. So, we are going to choose equation A2 from here 

because it is rectangular coordinates which fits the geometry c and Di are constants. Therefore this 

equation can directly be used this is much easier to use. So, this is the equation here 
𝜕c𝑖

𝜕𝑡
 and this is 

the velocity times the concentration gradient and this is the second order term here and the reaction 

rate term here. 

 

Now you see how easy it becomes, it is steady state and therefore the time derivatives are set to 0. 

There is no convective or stirring bulk motion and only in the case of bulk motion will these 

velocities come into being. Therefore we can cancel this there is no velocity component in the x 

direction, there is no velocity component in the y direction, there is no bulk velocity component in 

the z direction. 

 

There is no equivalent of the whole liquid moving, it is only the species that is moving in the liquid. 

That movement is taken care of in the diffusive terms and there is no bulk motion here the liquid 

is stationary or the system is stationary right. So, all these terms go to 0 and here again the motion 

is only in the x direction therefore there is no movement in the y direction. Because the 

concentration does not vary with y, y is in this direction, the concentration does not vary with y. 

 



Here again x equal to 0 because the concentration is not a function and the z direction and there is 

no reaction that is taking place therefore this goes to 0. So, in one single step just by taking the 

comprehensive equation, cutting out the various terms that are not applicable, you do not have to 

remember this, just write down from the table. And in one step we got this equation that we derived 

through shell balance over various different steps in the previous case. 

 

So, that is the ease of working with this, although there is some caution that you need to exercise 

here when using this. So, we got this equation which is the same equation that we got earlier 

through shell balances Di 
𝝏𝟐𝒄𝒊

𝝏𝒙𝟐 = 0. Now we come to the caution, shell balances although generally 

applicable can sometimes become cumbersome and thus this conservation equation approach 

would be convenient to use in many situations, that is the reason why we got into this. 

 

The below equation for  binary components: 

 

 

 

However, note that we derive these conservation equations based on standard shells, cuboidal 

shells, cylindrical shells, spherical shells. If the shell shape happens to be different, for example if 

we have a cone. The cone there is a gradual change in the cross sectional area, there could be 

various situations where the area changes. For example if the cross section area is variable. 

 

Equation A2, B2, C2 are not applicable you know that those constants c, DAB we derived by taking 

the area to be a constant if you go back and check. You would have implicitly assumed that the 

area does not vary there, and we cancel the areas. And if that is not applicable, those equations will 

not be applicable. So, be very careful whenever you deal with variable area you cannot use A2, 



B2, C2, you can use A1, B1, C1 they are not based on the area, that is what is mentioned here. 

However verify that A1, B1 and C1 you are asked to verify are not affected by this aspect and are 

generally applicable. Go back check this convince yourself that this is indeed the case or 

understand that this is indeed the case, if you are not able to understand get back to me I will talk 

to you on a one on one basis through email. That is what we have here, we had derived the 

conservation or we have shown the conservation equation approach to solve problems to get 

concentration profiles which are important in many cases. To do that we first derived the continuity 

equation for a single species in a multi component mixture to make it generally applicable, that is 

what we did in this class. Let us stop here, we will continue in the next class, see you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The below equation are for binary systems. 

 

 

  


