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Lecture - 9 
Maxwell’s relations  

 
Welcome!  

 

In the last class, we looked at the relationships between some of those properties, thermodynamic 

properties using some simple aspects of mathematics. We also saw the Gibbs-Duhem equation, 

which is a central equation in thermodynamics. Since, it gives the simultaneous variation with 

temperature, pressure and chemical potential, which are the fundamental intrinsic properties of a 

system. We will continue looking at useful relationships between various variable, and also I will 

tell you how it comes in useful in the tutorial part. The next thing that we are going to look at in 

the same vein is Maxwell’s relations. 
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To get to Maxwell’s relations, let us first consider a theorem and calculus that is applicable to 

exact differentials. We do not have to worry too much about whether we are dealing with exact 

different differentials or not in thermodynamics, because we deal with state functions in 

thermodynamics mostly, and most of those state functions can be written as exact differentials. 

 

The theorem says if f can be considered as a function of some variables which are given here as 

x 1, x 2 and so on till x k,  

 

𝑓𝑓 = 𝑓𝑓(𝑥𝑥1,  𝑥𝑥2,  … ,  𝑥𝑥𝑘𝑘)  

 

then df … df being an exact differential, can be written as  

 

𝑑𝑑𝑓𝑓 =   � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
𝑥𝑥𝑗𝑗

 𝑑𝑑𝑥𝑥1 +   � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

�
𝑥𝑥𝑗𝑗
 𝑑𝑑𝑥𝑥2  + ⋯+ � 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑘𝑘
�
𝑥𝑥𝑗𝑗
 𝑑𝑑𝑥𝑥𝑘𝑘    

 

dou f by dou x 1 at … evaluated at all these other variables kept constant which is indicated by x 

j as I had mentioned earlier d x1plus dou f dou x 2 x j which means x1 x 3 and other variables … 

x k are held constant – that is what this x j means –  dx 2 and so on until dou f by dou x k, all 

other x js remaining constant, dx k.  

 

This is a fundamental theorem that is applied to … applicable to exact differentials. 
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Now, let us take those partial differentials dou f by dou x 1 at constant x j, dou f by dx 2 at 

constant x j, and so on and replace them with another symbol for easy manipulation. Let us say  

 

𝑦𝑦1 =   � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
𝑥𝑥𝑗𝑗

  

 

If we do that, then, we can write the previous equation as  

 

𝑑𝑑𝑓𝑓 = 𝑦𝑦1 𝑑𝑑𝑥𝑥1+𝑦𝑦2 𝑑𝑑𝑥𝑥2 + ⋯+   𝑦𝑦𝑘𝑘 𝑑𝑑𝑥𝑥𝑘𝑘   

 

Let us call this equation 2.24.  

 

The theorem that is also known as reciprocity relationship, says that when we can do this that is 

df being expressed as y1 dx 1plus y 2 dx 2 and so on till y k, dx k,  

 

�𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑛𝑛

�
𝑥𝑥𝑗𝑗

= �𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝑥𝑥𝑖𝑖
�
𝑥𝑥𝑗𝑗

  

 

For example, if you take i to be 1 and n to be 2 dou y 1 by dou x 2 at all other x j s remaining 

constant equals dou y 2 by dou x 1 at all other x j s remaining constant. It is applicable for any i 



and any n … that is different from i. For example, it could be dou y 3 by dou x 10 at all other x j 

s remaining constant equals dou y 10 by dou x 3 at all other x j s remaining constant. 
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If we apply this theorem, also called the reciprocity relationship, to our basic equations that we 

had given earlier, basic differentials that we had given earlier … If you recall equation 2.12 which 

is also given here  

 

𝑑𝑑𝑈𝑈𝑇𝑇 =  𝑇𝑇 𝑑𝑑𝑆𝑆𝑇𝑇 −  𝑃𝑃 𝑑𝑑𝑉𝑉𝑇𝑇 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

Remember that this consists of many different terms that are given by the sum sign. If we apply 

the reciprocity relationship here it will give us dou T by – let us choose this be other variable – 

dou V T, at all other things remaining constants such as S T and all n is remaining constant, this 

equals  

 

� 𝜕𝜕𝑇𝑇
𝜕𝜕𝑉𝑉𝑇𝑇

�
𝑆𝑆𝑇𝑇,  𝑛𝑛𝑖𝑖

=      −  � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆𝑇𝑇

�
𝑉𝑉𝑇𝑇,  𝑛𝑛𝑖𝑖

  

 

This gives a nice relationship between the thermodynamic variables just by using the reciprocity 

relationship of writing differentials. 

 



We will call this equation 2.26. Let me show this a few more times so, that it becomes simpler to 

remember. Let us consider the next relationship  

𝑑𝑑𝐺𝐺𝑇𝑇 = −𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +  𝑉𝑉𝑇𝑇 𝑑𝑑𝑃𝑃 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

as we have already seen in equation 2.15. If we utilize the reciprocity relationship here,  

 

−�𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝜕𝜕
�
𝑇𝑇,  𝑛𝑛𝑖𝑖

=   �𝜕𝜕𝑉𝑉
𝑇𝑇

𝜕𝜕𝑇𝑇
�
𝜕𝜕,  𝑛𝑛𝑖𝑖

  

 

By now, you must be getting comfortable with writing reciprocity relationships from total 

differentials. Let us call this equation 2.27 
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Let us take another example.  I will give you all four or … more than four in the first case.  

 

𝑑𝑑𝐻𝐻𝑇𝑇 = 𝑇𝑇 𝑑𝑑𝑆𝑆𝑇𝑇 +  𝑉𝑉𝑇𝑇 𝑑𝑑𝑃𝑃 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

this was equation 2.17 before. If we write … or apply the reciprocity relationship here 

 

�𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝑆𝑆,  𝑛𝑛𝑖𝑖

=   �𝜕𝜕𝑉𝑉
𝑇𝑇

𝜕𝜕𝑆𝑆𝑇𝑇
�
𝜕𝜕,  𝑛𝑛𝑖𝑖

  



 

 equation 2.28.  

 

Let us consider d A T now.  We already have equation 2.18 as  

 

𝑑𝑑𝐴𝐴𝑇𝑇 = −𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 −  𝑃𝑃 𝑑𝑑𝑉𝑉𝑇𝑇 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

note –  both are minuses here. So, you do not have to worry about it, if you take these two.  

 

�𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇,  𝑛𝑛𝑖𝑖

=   �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑉𝑉𝑇𝑇,  𝑛𝑛𝑖𝑖

  

 

We will call this equation 2.29. 
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Let us consider equation 2.15 again.  

 

𝑑𝑑𝐺𝐺𝑇𝑇 = −𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +  𝑉𝑉𝑇𝑇 𝑑𝑑𝑃𝑃 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

Earlier for all the four equations … for a closed system, we looked at just the first two terms for 

writing the reciprocity relationship. Now let us look at the third term also.  Note that this consists 

of the sum. So, each one is different here. So, let us take one of those …  

 



 

�𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑇𝑇
�
𝜕𝜕,  𝑛𝑛𝑖𝑖

=   − �𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,𝜕𝜕,𝑛𝑛𝑗𝑗

   

 

Let me repeat this dou mu i dou T at constant P all other n i equals, minus – minuses here – dou 

S T dou n i constant T, P, all other n j s … which are different from i. Let us do this once again 

to get other useful relationships. Before that, let’s call this equation 2.30. 

 

�𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜕𝜕
�
𝑇𝑇,  𝑛𝑛𝑖𝑖

=    �𝜕𝜕𝑉𝑉
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,𝜕𝜕,𝑛𝑛𝑗𝑗

  

 

We had considered these two terms while this equation. Let us call this equation 2.31. There was 

a reason why we chose to compare these two and these two and actually use d j 2 to do it. If you 

recall we have dG T with variation of T P and n i. So, which are easily measurable variables? If 

they are easily measurable then we can do experiments with them quietly easily. This gives the 

variation of chemical potential with temperature which is a very useful relationship to have when 

the pressure and the number of moles of all species are held constant which can be done 

experimentally. 

 

This gives the variation of chemical potential with pressure when the temperature and all moles 

are held constant which can be again done in an experiment. And this is given in terms of the 

other thermodynamic variables which may be easier to determine. So, that is going to be some 

sort of a theme in this particular module. That is expression of difficult to measure 

thermodynamic variables in terms of easy to measure thermodynamic variables. That is a way 

we are going to use these equation. These equations are valid for anything that you want to do. 

These relationships are there for anything that you want to do. We are going to do one small 

aspect or one aspect of the many different things that you can do with these relationships. 

 



 
 

The equations 2.26 to 2.31 let me go back and show you 2.26 just for recall; 2.27… 2.26 was dou 

T dou V T constant S T n i equals minus dou P dou S T constant V T n i. 2.27, minus dou S T 

dou P at constant T n i equals dou V T dou T at constant P n i equation 2.27. 2.28, was dou P dou 

T constant S n i equals dou V T dou S T constant P n i. Equation 2.29 was dou S T dou V T 

constant T n i equals dou P dou T at constant V T n i. And, as we spent some extra time here dou 

mu i dou T at constant P n i equals minus dou S T dou n i at constant T P all other n j s and dou 

mu i dou P at constant T n i equals dou V T dou n i at constant T P all other n j s. 
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So, these equations are called Maxwell’s relations. Very useful. As I had already mentioned its 

worth mentioning again: Temperature, pressure and the total volume are easily measurable. 

Maxwell’s relations can help us that is one of the things they do you can do many other things 

with them can help us express the other variables such as U T, internal energy, S T, enthalpy total 

enthalpy –  all these are total quantities since that are more than one mole of the substance … of 

the pure substance that way considering here – H T is enthalpy … total enthalpy, A T is total 

Helmholtz free energy, and G T is total Gibbs free energy. 

All these can be written in terms of easily measurable T P and total volume and therefore, by 

these measurements under suitable conditions we can estimate these thermodynamic variables U 

T, S T, H T, A T and G T.  

We started with a slightly more general set of relations. The Maxwell’s relations that we have 

written down so far are valid for any system, any pure substance, irrespective of the size of the 

system or the number of the moles in the system. Whereas, in many different books including 

your text book, initially when this is introduced, you would find the Maxwell’s relations written 

for one mole. Which means, the mu i d n i terms any d n i related terms n i related terms will not 

be there because you have only one mole and that is held constant. 
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Let us look at these relationships for completeness because you can directly use these 

relationships under such conditions where you have one mole of the substance.  

�𝜕𝜕𝑇𝑇
𝜕𝜕𝑉𝑉  �𝑆𝑆 

=   −  �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆 �𝑉𝑉  

  

−�𝜕𝜕𝑆𝑆
 

𝜕𝜕𝜕𝜕
�
𝑇𝑇

=   �𝜕𝜕𝑉𝑉
 

𝜕𝜕𝑇𝑇
�
𝜕𝜕

  

�𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝑆𝑆

=   �𝜕𝜕𝑉𝑉
 

𝜕𝜕𝑆𝑆 �
𝜕𝜕

  

�𝜕𝜕𝑆𝑆
 

𝜕𝜕𝑉𝑉  �
𝑇𝑇

=   �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑉𝑉  

  

 

You may want to compare these expressions … I would like you to do that … I do not want to 

go back now. If you just compare this expression with the earlier Maxwell’s relations that we 

have written, you would see that these are exactly the same as the first four Maxwell’s relations 

that we had written except that you do not have any n i s occurring because we have one mole of 

the substance. These would come in handy in some of your problems in the university exams and 

so on. 
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OK, now, we are going to do some tutorial work. I am going to present this problem to you, and 

then I will give you some time to work it out, because you will understand the application of 

these equations and get comfortable with the applications of these equations only by working out 

problems. And you need to work them out first – that would be the most effective. So, you will 

work them out. I will give you time, may be about 10 minutes. And may be after some time, I 

will present a part of the solution so that you can start working at a faster pace if that hint or part 

of the solution is going to help you. 

Later I will give you the entire solution. This exercise essentially shows a way to use some of the 

relationships that we have a developed so far. The question is, for a closed system express in 

terms of easily measurable properties, pressure, total volume and temperature the variation of 

internal energy with volume for a process in which the temperature and the number of moles are 

held constant. Essentially we are looking for dou U T, the variation of internal energy, with 

volume. So, dou U T dou V T at constant temperature and n i. Please go ahead you have about 

10 minutes. 
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Let us look at the part of the solution now.  
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Let us look at a part of the solution now. To do this, you know that we are looking for  

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

  

Let us begin with equation 2.12.  

𝑑𝑑𝑈𝑈𝑇𝑇 =  𝑇𝑇 𝑑𝑑𝑆𝑆𝑇𝑇 −  𝑃𝑃 𝑑𝑑𝑉𝑉𝑇𝑇 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

Because this has the relationship for dU T and these would be dou U T and so on. dou U T 

variation. The partial derivative of VT at constant T and n i can be written as  

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

=   𝑇𝑇 �𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

−   𝑃𝑃 �𝜕𝜕𝑉𝑉
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

+   ∑ 𝜇𝜇𝑖𝑖 �
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑉𝑉𝑇𝑇

�
𝑇𝑇, 𝑛𝑛𝑖𝑖

𝑖𝑖   

To continue further … we are looking at dou U T dou V T at constant T n i. Look at these terms 

here and see what you could do to get it in terms of measurable quantities. Take another five 

minutes or so. 
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Let us continue with the solution. Look at the second and third terms on the right hand side here 

… P dou V T dou V T T n i plus summation of mu i dou n i dou V T at constant T n i. The second 

and third derivative terms on the right hand side are 1 and 0. 1 because dou V T dou V T. So, that 

goes to 1 and 0 because n i is a constant. So, any variation with n i would be 0. Therefore, what 

remains of that equation is dou U T dou V T at constant T n I; this was the initial left hand side. 

The first term remains: equals T dou S T S dou V T at constant T n i, and since this is gone to 

one whatever accompany P here we just have a P remaining minus p. 

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

=   𝑇𝑇 �𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

−   𝑃𝑃  

Now if we use one of the Maxwell’s relations which is equation 2.29 here,  

�𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇,  𝑛𝑛𝑖𝑖

  

this we know is a little difficult to measure. So, let us try to write this in terms of easily measurable 

quantities.  

�𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇,  𝑛𝑛𝑖𝑖

=   �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑉𝑉𝑇𝑇,  𝑛𝑛𝑖𝑖

  

In this case P, T are all easily measurable. If we do that then you can write  

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑇𝑇, 𝑛𝑛𝑖𝑖

=   𝑇𝑇 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑉𝑉𝑇𝑇, 𝑛𝑛𝑖𝑖

−   𝑃𝑃  



Which is what we need. 

Let me call this equation 2.32 because it will come in useful later. You have gotten this in terms 

of all easily measurable thermodynamic variables T, P, V T, n i and so on. 
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To recapitulate the easily measurable ones are P, T, V the molar volume or V T the total volume. 

In addition, the following are measurable, and the data is available in the form of tables or figures 

in books, handbooks or papers for pure substances. Some of these are available at the back of 

your text book Smith VanNess and Abbott. C P, heat capacity at constant pressure, this is 

available … the data is available. C V heat capacity at constant volume, the data is available, 

alpha which is expansivity.  I will go into details of this in a little while, and kappa the 

compressibility are all available. So, if they are available we might as well make use of them to 

estimate the difficult to measure thermodynamic variables. In addition to these the latent heats 

are available as well as the heats of reaction are available. Let us look these in a little more detail 

… other measurable thermodynamic variables. 
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Other measurable thermodynamic variables: 
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Heat capacity C P is defined as  

𝐶𝐶𝜕𝜕 ≡   �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝜕𝜕

  

This is for a pure substance. We will call this equation 2.33.  

For any system C P is defined as �𝜕𝜕𝜕𝜕
𝑇𝑇

𝜕𝜕𝑇𝑇
�
𝜕𝜕

    

 

This is for one mole of a pure substance this is for any system.  



Now C V is defined as  

𝐶𝐶𝑉𝑉  ≡   �𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇
�
𝑉𝑉

  

C P was dou H – enthalpy – dou T, C V is dou (internal energy) dou T at constant volume. Since 

this is V at constant volume we call it C V is specific heated constant volume. This is for a pure 

substance we will call equation 2.34 and for any system you can write you can define C V as  

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑇𝑇
�
𝑉𝑉

  

 

 
Expression of the not-so-easy to measure thermodynamic properties in terms of measurable 

thermodynamic properties helps in estimation of the not-so-easy to measure ones. I am just 

repeating this, so that it gets across better. 

 

For a closed system consisting of 1 mole of a pure substance, express in terms of more easily 

measurable properties, the variation of enthalpy and entropy with temperature and pressure, 

respectively. In other words,  

 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝜕𝜕

,  �𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇
�
𝜕𝜕

,  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

,  �𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕
�
𝑇𝑇
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The way to go about this would be as follows. The 1st partial derivative was  

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝜕𝜕

  

If you go back into your notes or into the earlier slides of this lecture, you would actually find, 

that this is the definition of C P, which is a measured quantity, which is … the data of which is 

available. So, we do not have to do anything further, �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝜕𝜕

   is itself a measured quantity. 

Since the system consists of 1 mole of pure substance, if you look at the equation 2.6, that we 

had written earlier, we can write the same equation 2.6 given here,  

𝑑𝑑𝐻𝐻 = 𝑇𝑇 𝑑𝑑𝑆𝑆 + 𝑉𝑉 𝑑𝑑𝑃𝑃  

it is for a closed system consisting of 1 mole of a pure substance. 

Now, if we take the partial derivative of H with respect to T at constant P, the 2nd term is going 

to vanish here because we are forcing P to remain constant. Therefore, d P will go to 0 and this 

term would vanish. Therefore,  

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝜕𝜕

=   𝑇𝑇 �𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇
�
𝜕𝜕
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Proceeding further,  

�𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇
�
𝜕𝜕

=  𝐶𝐶𝑃𝑃
𝑇𝑇

  

This, you get by comparing the previous equations. Let us go back a little bit, this is dow H dow 

T at constant P equals C P. dow H dow T at constant P … we had gotten this as T dow S dow T 

at constant P, you equate this to this, C P is easily measurable, and therefore, we get dow S dow 

T at constant P equals C P by T. So, we have handled this also. We will call this equation 2.35. 

So, we have some more remaining. The variation of entropy S with respect to pressure at constant 

temperature, dow S dow P with T remaining constant, is actually given by Maxwell's relation. 

You go back to your … we had written all four equations for 1 mole of a pure substance; you can 

go back and look at that. Actually, equation 2.27, written for 1 mole was  

�𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕
�
𝑇𝑇

=   −�𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇
�
𝜕𝜕

  

Let us call this as equation 2.36 here; and therefore, that takes care of three different parts of the 

question. 
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There is one more part that is remaining. For that, let us consider  

𝐻𝐻 = 𝑓𝑓(𝑆𝑆,𝑃𝑃)  

You can consider whatever is needed – as function of the relevant variables. In this case, let us 

consider enthalpy as a function of entropy and pressure. If you do this, dH, you know, can be 

written as dow H dow S at constant P dS, dow H dow P at constant S dP. 

Now, if you take the partial of that … with respect to P at constant temperature,  

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

 =  �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�
𝜕𝜕
�𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕
�
𝑇𝑇

+  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑆𝑆
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇
  

dow H dow P at constant T, this is the quantity that we need … dow H dow S at constant P, which 

is a 1st term, that came from the previous total differential writing and of course, dow S dow P at 

constant T, and this again comes from the partial differential writing, the total differential 

expansion dow H dow P at constant S. And here, dP would be there, you take the partial derivative 

dow P dow P at constant T; very easy to see that this goes to 1. 

Now, comparison with the terms on the right hand side of the total differential,  

𝑑𝑑𝐻𝐻 = 𝑇𝑇 𝑑𝑑𝑆𝑆 + 𝑉𝑉 𝑑𝑑𝑃𝑃  

we can write,  

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�
𝜕𝜕

= 𝑇𝑇  



�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑆𝑆

= 𝑉𝑉  
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Therefore, dow H dow P at constant T, which is the one that we require – it is nothing but  

 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

=   𝑇𝑇 �𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕
�
𝑇𝑇

+   𝑉𝑉   

 

So, we have gotten all four quantities, that we were required to get.  If you look at it, it is 

essentially, manipulation, appropriate manipulation of the mathematical relationships to get 

whatever we needed. This is still in terms of dow S dow P at constant T and this is not completely 

in terms of easily measurable variables, but using the relationship between dow S dow P at 

constant T, that we had given in equation 2.35 earlier. You can look at equation 2.35, we have 

numbered that … yeah, dow S dow T at constant P as CP by T. We can write  

 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

=  −  𝑇𝑇 �𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇
�
𝜕𝜕

+   𝑉𝑉  

 

This is the other relationship, which brings dow S dow P at constant T in terms of V, T and P. 

We will call this equation 2.37.   

 

See you in the next class. 


