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Now we will be basically looking at the partition function of a monatomic gas. So, what will be 

the partition function of a monoatomic gas? So, as I have shown you that partition function can 

be correlated to various common area quantities now we are taking a special case where we are 

trying to find out the partition function for monoatomic gas and from there on we will see how 

this partition function of monoatomic gas correlates to various thermodynamic quantities. 

 

So, when it comes to a monotonic gas so you know this monoatomic system has only the 

translational motion. It has only the translation it has only the translation. It does not have if the 

system was a molecular system then, it will also have a rotational motion and it would also have 

a vibrational motion.  

 

And therefore your total energy would turn out to be E translational plus E rotational plus E 

vibrational correspondingly your total partition function would look like as q translational 

product, q rotational product, q vibrational. But in this case we are talking about a much simpler 

system where we have no vibration, we have no rotation as well and therefore the energy 

contribution will have only the translational motion. 



 

And therefore our q partition function will also have only the q translational. So, let us find out 

for the simple case what is our q. We assume that ours our gas is content in a cubic box of length 

a, so this is the cubic box of length a and monoatomic gas is basically kept in here. Now, if you 

recall your, your first-year chemistry. We you know that for a particle in a box system the energy 

was– 

𝐸𝐸𝑛𝑛 =  
𝑛𝑛2ℎ2

8𝑚𝑚𝑚𝑚2
 

 Where n is the quantum number. 

It is a quantum number and it is an integer. So, this is the energy for a particle in a box. But if 

you remember this expression was for the movement of the particle in one dimension, in one 

dimension. Now if we make use of that formula here, our q translational, will be  

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 =  �𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛2
8𝑚𝑚𝑡𝑡2

∞

𝑛𝑛=1

 

This is in one-dimension, our gas is content in a cubic box and therefore the particle the gas 

particle can move in all XYZ direction. So, in that case our q translational in 3D would be  

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 =  � 𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛𝑥𝑥2
8𝑚𝑚𝑡𝑡2 +  � 𝑒𝑒

−𝛽𝛽ℎ2𝑛𝑛𝑦𝑦2

8𝑚𝑚𝑡𝑡2 +  � 𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛𝑧𝑧2
8𝑚𝑚𝑡𝑡2

∞

𝑛𝑛𝑧𝑧=1

∞

𝑛𝑛𝑦𝑦=1

∞

𝑛𝑛𝑥𝑥=1

 

 

Here n is equal to integer 1 to infinity. So, this is q translational of 3D. Now, if you see is the part 

the gas is in cubic box and particle can go in X Y Z direction equally it can go to any direction 

with equal probability.  

 

So, therefore we can write q thoroughly as our XYZ, all three directions are equally probable and 

they are, there they are the same. So, we can simplify this further. Let us see how we can simplify  

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡3𝐷𝐷 =  ��𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛2
8𝑚𝑚𝑡𝑡2

∞

𝑛𝑛=1

�
3
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So, here our sum goes from n is equal to 1 because the quantum number is an integer and for the 

sake of mathematical simplicity, we want to change this limit from n is equal to 0 to infinity, how 

do we do that? so, we write as it is and then we simply put minus 1. Since e to the power 0 is 1, 

so just by when I put 1 into it was 0, so I get was 0 which is one and that one I am basically 

subtracting out here.  

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡3𝐷𝐷 =  ��𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛2
8𝑚𝑚𝑡𝑡2  

∞

𝑛𝑛=0

− 1�
3
 

 ≅  ��𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛2
8𝑚𝑚𝑡𝑡2  

∞

𝑛𝑛=0

�
3
 
 

 

 

Now since this number, this number is much, much larger than 1 we can write this as n is equal 

to these are mathematical tricks, to make our calculation tractable. So, since 8m square to the 

power 3 since this quantity is much larger than 1 and therefore we can neglect 1. The second trick 

is since energy gap is very small you know, in in every system, in, in this case, in the quantum 

system, since there are many energy levels and the energy gaps are very small so we can assume 

we can replace this sum by integral. 

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡3𝐷𝐷 =  �� 𝑒𝑒
−𝛽𝛽ℎ2𝑛𝑛2
8𝑚𝑚𝑡𝑡2

∞

0
  𝑑𝑑𝑛𝑛�

3
 
 

 

So, this we can write as 0 to infinity e to the power minus beta n square h square by 8 m a square 

dn the power cube to the power 3 and we written with the logic that since energy gaps are gaps 

are very small, they are very small. So, you can you can assume that it is like a continuous energy 

states and therefore we change the sum to integral. Now how do we simplify this integral? 



 

Let us say,  

𝑏𝑏 =  
𝛽𝛽ℎ2

8𝑚𝑚𝑚𝑚2
 

Hence we can write 

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡3𝐷𝐷 =  �� 𝑑𝑑𝑛𝑛 𝑒𝑒−𝑏𝑏𝑛𝑛2
∞

0
  �

3
 
 

And  

� 𝑒𝑒−𝑏𝑏𝑛𝑛2
∞

0
 𝑑𝑑𝑛𝑛 =  

1
2

 �
𝜋𝜋
𝑏𝑏
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Therefore 

𝑞𝑞 =  �
1
2

 �
𝜋𝜋
𝑏𝑏
�

3
 
 

𝑞𝑞 =  �
1
2

 �
𝜋𝜋. 8𝑚𝑚𝑚𝑚2

ℎ2
�

3/2
 

 .𝑉𝑉 

𝑞𝑞 =  
𝑉𝑉
∆3

 

Thus, 



                                                         ∆3=  � ℎ2

2𝜋𝜋𝑚𝑚𝜋𝜋𝜋𝜋
� 3/2

  

 
 

And this lambda having a dimension of length is called the Thermal De Broglie wavelength, 

Thermal De Broglie wavelength okay. So, this is the expression what we are looking for and we 

got it finally for a monoatomic gas, the expression for partition function. So, the expression for 

expression of partition function for a monoatomic gas is nothing but volume divided by the cube 

of Thermal de Brogile wavelength.  

 

So, now since we have the partition function of this mono atomic gas let us find out different 

thermodynamic quantities. So, the first thermodynamic quantity we can look for is the energy. 
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So what is the energy of a monoatomic gas system?  

𝐸𝐸 =  �𝑛𝑛𝑖𝑖𝜀𝜀𝑖𝑖 

𝐸𝐸 =  �𝜀𝜀𝑖𝑖  
𝑛𝑛
𝑞𝑞

 𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖 

𝐸𝐸 =  
𝑛𝑛
𝑞𝑞

 �𝜀𝜀𝑖𝑖  𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖
𝑖𝑖

 

We know that 

𝑞𝑞 =  �  𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖 



𝑑𝑑𝑞𝑞
𝑑𝑑𝛽𝛽

=  −�𝜀𝜀𝑖𝑖 𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖
𝑖𝑖

 

Putting this into above equation 

𝐸𝐸 =  −
𝑛𝑛
𝑞𝑞

  
𝑑𝑑𝑞𝑞
𝑑𝑑𝛽𝛽

 

𝐸𝐸 =  −𝑛𝑛  
𝑑𝑑 ln 𝑞𝑞
𝑑𝑑𝛽𝛽

 

𝐸𝐸 =  −
3
2

  
𝑑𝑑
𝑑𝑑𝛽𝛽

ln
1
𝛽𝛽

 

 

This will gives us 
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𝑬𝑬 =  
𝟑𝟑
𝟐𝟐

 𝒏𝒏𝒏𝒏𝒏𝒏 

 

So, as you know as we have seen already E is total energy in terms of Boltzmann distribution 

law. 

So we have started from the definition of partition function and then, we using that partition 

function definition we have come up with the thermodynamic expression what you know of the 

total energy of a monatomic gas system as 3/2 n KT. 

 

What is the pressure of this system so pressure as you know from your thermodynamic law and 

which we already have used to get the relation with the partition function 



𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛 �
𝜕𝜕 ln 𝑞𝑞
𝜕𝜕𝑉𝑉 �

 
𝑛𝑛

 

𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛 
𝜕𝜕
𝜕𝜕𝑉𝑉

ln �
2𝜋𝜋𝑚𝑚𝑛𝑛𝑛𝑛
ℎ2 �

3/2
 

 .  𝑉𝑉 

𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛 
𝜕𝜕
𝜕𝜕𝑉𝑉

ln  𝑉𝑉 

𝑷𝑷𝑷𝑷 = 𝒏𝒏𝒏𝒏𝒏𝒏 

 

That is your PV is equal to n KT which is the equation of state because an upstate offer of an 

ideal monoatomic gas system. So, what I want to point out here is that thermodynamics and 

statistical thermodynamics, they are they complement each other and thermodynamics statistical 

thermodynamics basically keeping with a microscopic information in terms of partition function 

here. 

 

And that partition function can bring out not only the thermodynamic expressions but also can 

correlate to many classical equations our expressions you know how like PV is equal to n KT or 

the total energy is equal to 3 /2 n KBT where KB is the Boltzmann constant which I have written 

as K. 

 

 

 


