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Welcome!  

 

In the last class, we saw an important aspect or an important concept that we will use repeatedly 

in Classical Thermodynamics. That is the concept of state variable values not depending on the 

path taken between the two states.  
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The … To understand that a little better, the example that we had considered was taking multiple 

routes between two destinations, 1 and 2, in a mountainous region. And, if we are interested in 

the difference in heights between 1 and 2 let us say, then the … then the height being a state 

variable, which depends only on the state of the system or the state 1 or the state 2 and not on the 

path in between them, irrespective of the path that we take, the value of the difference in the state 

variable or the difference in heights, in this case, will always be the same. This is a very powerful 

concept or idea that we will repeatedly use. This route, where the altimeter was available – it 

gave us a means of measuring. Similarly, we would have routes in Thermodynamics between 



two states, various paths. And, one of those paths would have some easy way of measuring the 

state variable between … the state variable values at these two points. This was one important 

aspect. 
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Then, we started looking at equations for a closed system, useful thermodynamic equations for a 

closed system. Let us start with that again for this particular class. We just had done one last time. 

For a closed system, we have already seen from the definition of enthalpy H from equation 2.1. 

Enthalpy, it is defined as U plus PV. Therefore, the total differential of enthalpy dH is d of (U 

plus P V). And, if we use the rules of differentials, it will be d U plus, using chain rule here it will 

be first function into derivative of the second function plus derivative … plus the second function 

into derivative of the first function; that is P dV plus V dP.  

𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑑𝑑 + 𝑃𝑃 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃  

And, we already know dU as T dS minus P dV.  

𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑑𝑑 − 𝑃𝑃 𝑑𝑑𝑑𝑑  

That was our equation 2.5 earlier. And, if you substitute this here, we have T dS minus P dV plus 

P dV. So, these two will cancel out and we have dH equals T dS plus V dP.  



𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃   

This is the equation 2.6. 
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There are other useful equations or relationships that we can derive for the other thermodynamic 

variables. And, let us see some of them here. If you recall the definition of the Helmholtz free 

energy A, we have defined it as U minus TS. If you want, you can go back and check equation 

2.2 in your notes or in the video lectures. A equals U minus TS.  

A = U – TS 

Therefore, the total differential of A; following the same scheme earlier, it is nothing but dU 

minus, by a chain rule, T dS minus S dT.  

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇 𝑑𝑑𝑑𝑑 −  𝑑𝑑 𝑑𝑑𝑇𝑇  

And, we already know that dU equals T dS minus P dV from equation 2.5.  

𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑑𝑑 − 𝑃𝑃 𝑑𝑑𝑑𝑑  

And therefore, if we substitute T dS minus P dV here, T dS minus P dV minus T dS minus S dT. 

T dS minus T dS will get cancelled out. And therefore, we are left with dA equals minus S dT 

minus P dV.  



𝑑𝑑𝑑𝑑 =  −  𝑑𝑑 𝑑𝑑𝑇𝑇 −  𝑃𝑃 𝑑𝑑𝑑𝑑  

We will call this equation 2.7. 
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So, we have looked at internal energy U, enthalpy H, Helmholtz free energy A. And, the only 

other thermodynamic variable that we have defined so far is the Gibbs free energy G. According 

to our definition of Gibbs free energy,  

 

G = H – TS 

 

enthalpy minus the product of temperature and entropy. Same scheme as earlier;  

 

𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑑𝑑 −   𝑇𝑇 𝑑𝑑𝑑𝑑 −   𝑑𝑑 𝑑𝑑𝑇𝑇  

 

We know that  

 

𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑑𝑑𝑃𝑃  

 

This, we have already seen, when we derived equation 2.6. Now, if you substitute T dS plus V 

dP for dH, you can see that, this T dS and this minus T dS will get cancelled out. And, what we 

are left with is  

 



𝑑𝑑𝑑𝑑 =  −  𝑑𝑑 𝑑𝑑𝑇𝑇 +  𝑑𝑑 𝑑𝑑𝑃𝑃  

 

Let us call this equation 2.8. Remember, we have derived these equations for a closed system. 
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So for a single component single faced single-phase closed system the following equations are 

valid which we derived dU equals TdS - PdV this was that equation 2.5, dH equals TdS + VdP 

equation 2.6 dA equals - SdT - PdV equation 2.7 dG equals - SdT + VdP equation 2.8.  

 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑑𝑑  

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑃𝑃  

𝑑𝑑𝑑𝑑 =  −𝑑𝑑𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑑𝑑  

𝑑𝑑𝑑𝑑 =  −𝑑𝑑𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑑𝑑𝑃𝑃  

 

Usually these useful relationships become a part of us because of repeated use but for examination 

purposes for your university examination purposes you might want to remember these equations 

you can always derive them quite simply from first principles as we shown. 
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So far we had looked at a single component system 1 mole of that system and that being a closed 

system. Now let us slightly complicate the system let us increase the number of moles of the pure 

component earlier it was 1 did it now be more than 1. It is still a closed system it is still a pure 

component and only the number of moles are more than 1. If that is the case remember we had 

used U S H A G for 1 mole of the substance. 

 

The thermodynamic quantities for 1 mole of the substance. Now since the number of moles are 

greater than 1 let us use a slightly different terminology so that there is no confusion later. So, 

the terminology for the thermodynamic variables of a system consisting of let us say n moles of 

a pure component is U total represented as U T as total UT; H total, HT; A total, AT; G total, 

GT, and V total VT. The 4 equations that we derived for a closed system earlier for 1 mole of a 

closed system consisting of 1 mole of a pure component earlier are valid even in this case. 

 

I am NOT going to prove that in this particular lecture if you need proof you can see 1 of your 

reference books which is by Kenneth Denbigh. Let me just state the equations here dU T equals 

T dS T remember that T is an intensive variable its value will not depend on the amount of 

substance present so it is going to be  T dS T - P dV. P is also an intensive variable; let us call 

this equation 2.5a. dHT is T dS T + VT dP equation 2.6a you can compare these equations with 

the equations for 1 mole of a pure substance dAt equals – ST dT - P dV T equation 2.7a and dGT 

equals – S T dT + VT dP which is equation 2.8a. 

 

 



 

𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑇𝑇  

𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑇𝑇𝑑𝑑𝑃𝑃  

𝑑𝑑𝑑𝑑𝑇𝑇 =  −𝑑𝑑𝑇𝑇𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑇𝑇  

𝑑𝑑𝑑𝑑𝑇𝑇 =  −𝑑𝑑𝑇𝑇𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑇𝑇𝑑𝑑𝑃𝑃  

 

To reemphasize, these are the equations for a system that consists of n moles of a pure substance 

and system is a closed system. Now let us look at a slightly higher level of complication let us 

stick ourselves to 1 phase let us say a gas phase or a liquid phase just 1 phase there. But now let 

us increase the number of components from 1 earlier if you had only 1 component it was a pure 

substance. Let us increase the number of components from 1 to many now we have a multi-

component system but still let us work in single phase therefore we are looking at a multi-

component system but a homogenous of a homogenous system for example it could be a mixture 

of gases of different species it is all going to be in the gas phase. 

 

But it is going to consist of many different species the air is a very good example of a multi-

component homogeneous gas phase system. Air has predominantly nitrogen oxygen but you also 

have carbon dioxide you also have what away and so on and so forth. So, this is a an example of 

a multi-component homogeneous system. Let us look at some of the relationships that will that 

will be useful for a multi-component single phase system. 

 

(Refer Slide Time: 11:43) 

 



Before we do that we need to know some terminology that we use here let n1 be the number of 

moles of component 1 n to be the number of moles of component 2 and so on. 

 

(Refer Slide Time: 12:01) 

 
If you recall our equation 2.5  

 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑑𝑑  

 

you can recall that we took the internal energy U as a function of S and V. 

  

U = f(S,V) 

 

It will become clearer when I say the next thing and for saying the next thing let me extend this 

to a k-component case, this U as a function of S and V that we took to write for equation 2.5 was 

limited for a single component system or a pure substance. Now we are extending this to a k-

component case. Since it has k components it has to be indicated by the total internal energy. 

And, let us say that this is a function of entropy total entropy total volume and since it is a multi-

component system it will definitely depend on the number of moles of each component present. 

And, we are taking k components to be present so n1 number of moles of the first component and 

2 number of moles of the second component and so on till nk number of moles of the kth 

component.  

 

𝑑𝑑𝑇𝑇 = 𝑓𝑓(𝑑𝑑𝑇𝑇 ,  𝑑𝑑𝑇𝑇 ,  𝑛𝑛1,  𝑛𝑛2,  𝑛𝑛3,  … ,  𝑛𝑛𝑘𝑘)  



 

I will call this equation 2.9. 

 

Therefore the total differential of UT if you recall the way the total differentials are written is the 

partial differential of UT with respect to ST at constant other variables or are the conditions where 

the other variables are held constant which is VT n1 n2 n3 are all held constant which is indicated 

by ni being constant. So, dou UT by dou ST times dST + dou UT by dou VT the second variable 

at constant ST and all ni times dVT + dou UT by dou n 1 dn1 + dou UT by dou n 2 dn 2 and so 

on and so forth.  

 

And which can be indicated in short form as sum of i equals 1 to i equals k because there are k 

components dou UT by dou ni at constant VT ST and n j dn i, note that the subscripts i and the 

subscripts j do not correspond to the same species. We are taking the partial differential with 

respect to 1 of the species when all the other species are held constant. This is a notation to 

indicate that and this will be consistent this will help us in developing a consistent notation for 

representing this kind of a situation throughout the course. 

 

So, summation of i equals 1 to k dou UT by dou n i VT at constant VT ST and n j times dn i  

 

𝑑𝑑𝑑𝑑𝑇𝑇 = �𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑆𝑆𝑇𝑇
�
𝑉𝑉𝑇𝑇,  𝑛𝑛𝑖𝑖

 𝑑𝑑𝑑𝑑𝑇𝑇 +  �𝜕𝜕𝑑𝑑
𝑇𝑇

𝜕𝜕𝑑𝑑𝑇𝑇
�
𝑑𝑑𝑇𝑇,  𝑛𝑛𝑖𝑖

 𝑑𝑑𝑑𝑑𝑇𝑇  +   ∑ �𝜕𝜕𝑑𝑑
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑑𝑑𝑇𝑇,  𝑑𝑑𝑇𝑇,  𝑛𝑛𝑗𝑗

 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖=𝑘𝑘
𝑖𝑖=1   

  

This is the total differential this comes from the theorem in mathematics where you can represent 

the total differential by this particular thing if it is an exact differential we will call this equation 

2:10. 
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If we compare the first 2 terms of equation to 10 that we just wrote down with the equation 2.5a 

I am going to give you both these equations now.  

 

𝑑𝑑𝑑𝑑𝑇𝑇 = �𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑆𝑆𝑇𝑇
�
𝑉𝑉𝑇𝑇,  𝑛𝑛𝑖𝑖

 𝑑𝑑𝑑𝑑𝑇𝑇 +  �𝜕𝜕𝑑𝑑
𝑇𝑇

𝜕𝜕𝑑𝑑𝑇𝑇
�
𝑑𝑑𝑇𝑇,  𝑛𝑛𝑖𝑖

 𝑑𝑑𝑑𝑑𝑇𝑇  +   ∑ �𝜕𝜕𝑑𝑑
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑑𝑑𝑇𝑇,  𝑑𝑑𝑇𝑇,  𝑛𝑛𝑗𝑗

 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖=𝑘𝑘
𝑖𝑖=1   

 

This is 2.10 that we derived just now and this is 2.5a.  

 

𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑇𝑇  

 

Here going by the same scheme dUT is dou UT by dou ST at constant V dS T - dou UT by dou 

VT at constant S T dV T. It is quite easy to see the correspondence between the 2 and therefore 

quite straightforward to write dou UT by dou S T at constant V T ni equals the temperature and 

dou UT by dou VT at constant S T and all other components the number of components being 

held constant. 

 

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑆𝑆𝑇𝑇
�
𝑉𝑉𝑇𝑇,  𝑛𝑛𝑖𝑖

= 𝑇𝑇  

 

�𝜕𝜕𝑈𝑈
𝑇𝑇

𝜕𝜕𝑉𝑉𝑇𝑇
�
𝑆𝑆𝑇𝑇,  𝑛𝑛𝑖𝑖

=  −𝑃𝑃  

 

Note that this is for a multi-component system and we have compared it with a single component 

system and we are drawing useful relationships see you in the next class.  


