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Alright, so, now we will, so, so far we have seen the definition of statistical thermodynamics, we 

have seen the difference between thermodynamics and statistical thermodynamics. We have 

taken one example for a biological system and we have defined distribution of states and from 

there. We have defined the thermodynamic probability depth.  
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Now, now let us look at Boltzmann Distribution Law, the very important law in statistical 

thermodynamics. And we will derive the Boltzmann distribution law. So, let us consider our n 

particle system with total energy E, so they set the total energy I will be defining as capital E and 

energy for the states will be defining as epsilon. So, for the ith state the energy I'll take as epsilon 

i. So, we have a n particle system with total energy E. And the particles are distributed as follows: 

 

𝑛𝑛 =  𝑛𝑛0 +  𝑛𝑛1 +  𝑛𝑛2 … …  =  �  𝑛𝑛𝑖𝑖
𝑖𝑖

 

And  

𝐸𝐸 =  𝑛𝑛0𝜀𝜀0 +  𝑛𝑛1𝜀𝜀1 +  𝑛𝑛2 𝜀𝜀2 … …  =  �  𝑛𝑛𝑖𝑖𝜀𝜀𝑖𝑖
𝑖𝑖

 

So, number of particles in energy level 𝜀𝜀0 have 𝑛𝑛0 number of particles, energy level 𝜀𝜀1 have 

𝑛𝑛1 number of particles, , energy level 𝜀𝜀2 have 𝑛𝑛2 and so on so forth. So, my total number of 

particles n is sum over n0 plus n1 plus n2 plus all other terms which we write as sum over i ni. 

Likewise our total energy E you can write as sum over i ni Ei, okay.  
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So, as you have seen thermodynamic probability W is  

W =  
n!

n1!  n2!  n3! … …
 

 

(Refer Slide Time: 03:01) 



 
 

n factorial divided by n0 factorial, n1 factorial, n2 factorial and so on, so forth and this we can 

write as n factorial which is total number of particles and this we can write as product over all 

ni’s. So, this is my W can be written as– 

W =  
n!

∏  𝑖𝑖 ni! 
 

 

 

so if I take Lon, 

lnW = ln  𝑛𝑛𝑖𝑖! −  � ln𝑛𝑛𝑖𝑖! 
𝑖𝑖

 

 

Since, n is your total number of particles which is very large we can apply Sterling's 

approximations. So, after Sterling approximation we can write– 

lnW = n ln  𝑛𝑛 −  �𝑛𝑛𝑖𝑖 ln𝑛𝑛𝑖𝑖  
𝑖𝑖

 

And that thermodynamic probability changes all the time since particles are moving up and down. 

So, since particles go up come down, so, as they move up and down, the thermodynamic 

probability also changes. And thermodynamic probability becomes maximum at equilibrium.  
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So, at equilibrium so at equilibrium W or lon W is, is maximum. So, at equilibrium W or lon W 

is maximum and therefore derivative of lon W is zero. So, we can take the derivative of the 

previous expression where we had d just, so we had d of n ln n minus d of sum over ni lon ni and 

that is equal to zero. So, now if we simplify the n ln n, so, how do you get? 

𝑑𝑑 ln𝑊𝑊 = 0 

𝑑𝑑(𝑛𝑛 ln𝑛𝑛) − 𝑑𝑑(�𝑛𝑛𝑖𝑖 ln𝑛𝑛𝑖𝑖  
𝑖𝑖

)  = 0 

� ln 𝑛𝑛𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖  
𝑖𝑖

= 0 

 

Particles are spontaneously and continuously moving up and down and therefore d ni is not 

independent. So, how to simplify this expression? So, to simplify this expression we will be 

calling some important mathematical method, proposed by Lagrangi which is called Lagrangi 

undetermined multiplier. 

 

 

 

𝑑𝑑(𝑛𝑛 ln𝑛𝑛) = ln𝑛𝑛 𝑑𝑑𝑛𝑛 + 𝑛𝑛
1
𝑛𝑛

 𝑑𝑑𝑛𝑛 

            = ln𝑛𝑛 𝑑𝑑𝑛𝑛 + 𝑑𝑑𝑛𝑛  

And 𝑑𝑑(∑ 𝑛𝑛𝑖𝑖 ln𝑛𝑛𝑖𝑖  𝑖𝑖 ) =  ∑ ln𝑛𝑛𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 + 𝑑𝑑𝑛𝑛𝑖𝑖  
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So we will be making use of Lagrangi undetermined multiplier. So, the expression we got  

∑ ln 𝑛𝑛𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖  𝑖𝑖 = 0 ………. (1) 

𝑑𝑑𝑛𝑛 =  �𝑑𝑑𝑛𝑛𝑖𝑖 = 0 ;𝑑𝑑𝐸𝐸 =  �𝜀𝜀𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖 = 0
𝑖𝑖

 
𝑖𝑖

 

� ln𝑛𝑛𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 +  𝛼𝛼�𝑑𝑑𝑛𝑛𝑖𝑖 +  𝛽𝛽�𝜀𝜀𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 

�[ln𝑛𝑛𝑖𝑖 +  𝛼𝛼 +  𝛽𝛽
𝑖𝑖

𝜀𝜀𝑖𝑖] 𝑑𝑑𝑛𝑛𝑖𝑖 = 0 

After that if we add those two expressions with our parent equation, then, the variables become 

independent. So, at the moment our dni’s are not independent. So, now following the Lagrangi 

multipliers, what we are doing were basically multiplying constant one by a constant alpha dni 

and then adding to this expression multiplying the second constant with another constant beta 

adding the adding those two up in my parent expression one and they sum up to zero. 

 

So, now according to Lagrangi now dni’s become independent okay. So, we can write this as ln 

ni + alpha + beta epsilon i dni is equal to 0. So, now here there are so, now the restraining 

condition that dni’s are not independent is gone. So, due to Lagrangian multipliers my dni’s are, 

are now independent, independent, independent.  

𝑑𝑑𝑛𝑛𝑖𝑖  ≠ 0 
It cannot be 0 because particles are always moving up and down. 
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Hence                                            ln𝑛𝑛𝑖𝑖 +  𝛼𝛼 +  𝛽𝛽 𝜀𝜀𝑖𝑖 = 0 

𝑛𝑛𝑖𝑖 =  𝑒𝑒−𝛼𝛼𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖   ……………… (A) 

 

We know that 

 

 

𝑛𝑛 =  �𝑛𝑛𝑖𝑖 

=  �𝑒𝑒−𝛼𝛼𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖 

𝑒𝑒−𝛼𝛼 =  𝑛𝑛
∑𝑒𝑒−𝛽𝛽𝜀𝜀𝑖𝑖

  …………………… (B) 

 

By combining A and B finally we will get the  

𝑛𝑛𝑖𝑖 =  
𝑛𝑛 𝑒𝑒−𝛽𝛽𝐸𝐸𝑖𝑖
∑  𝑒𝑒−𝛽𝛽𝐸𝐸𝑖𝑖

 

 

 
This is the famous Boltzmann distribution law. 

 

So, what this distribution law says, that number of particle in the state with energy epsilon i is ni. 

So, ni is number of particles having energy epsilon i at equilibrium. So, Boltzmann distribution 

basically dictates the distribution of particles across energy states. 



 

 

 


