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Welcome! to the last lecture of this particular course on thermodynamics or essentially, on the 

application of classical thermodynamics to biological systems. In this course, or in this lecture, I 

am just going to review whatever we have done in the entire course and that way, it will probably 

improve some understanding of a few things. If you see things in perspective, it will help at 

different level of understanding, that is one and also, it is nice to look at everything together at 

one time. This lecture is going to be just speech or I am just going to continue talking, we probably 

would not have any gaps in between, those nice things, that we had when we could re-orient and 

think of something else or do something else and then come back. Those things were used as 

techniques to improve the learning process itself, bring an active learning, and so on and so forth 

… towards improved learning process during the lectures. This is just a review, so we will not 

have any breaks during the review. 

(Refer Slide Time: 01:26)  

 

The textbook for this course, of course, was Smith Van Ness and Abbot. I have given you the 

edition that I have used; probably there is a more recent edition. And the order of topics, I said, 



would be according to the university syllabus, but it will be different from that given in the 

textbook. The textbook has an order of its own for its own reasons, but for the given university 

syllabus, I think the order followed in this particular course is better for better understanding, and 

seeing things in perspective. The correspondence between the topics covered in the video and the 

chapter, chapter or chapters in the textbook will be available on the course webpage. 

And, I had given you an example also for module 2, that the thermodynamic functions H, A and 

G would be from chapter 6. Now, we are directly jumping to 6 here; concept of a chemical 

potential is chapter 10; equations for a closed systems, Maxwell’s relations, again from chapter 

6; Gibbs-Duhem equation from chapter 10 and thermodynamic analysis of processes including 

lost work and irreversibility was from chapter16. So, we would jump about in the textbook, but 

since you have this, if you want to read further from the textbook you can go to the appropriate 

chapters and read them. But I think, the ordering given in this particular set of lectures would be 

probably better if you need to understand the various aspects given here. 
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Then, I said, the approach for the most effective use of thermodynamics, that I see here, is as 

follows. We said, if you are looking at apples, three apples in a basket and you add them with 

four apples, then you get seven apples. You know … you could see this as three apples, if you 

add them with four apples, you could get seven apples. Similarly, if you take three coins, three 

10 rupee coins and add them with four other 10 rupee coins, you get seven 10 rupee coins. … 

This is in the level of specifics. I could introduce things in the level of specifics, but that makes 



it very limited. A probably comprehensive approach would be to abstract this into a number 3 

and abstract this into a number 4 and we know from 1st standard mathematics, that if you add 3 

and 4 together, you will always get 7, therefore you will get 7 of that kind. So, we said, that this 

is the approach that we are going to follow in this particular course. 

We will present the abstractions first and then take up specific cases. We said, that would make 

things a lot more complete. Otherwise, … especially in thermodynamics, and I believe, that that 

is a reason for a lot of confusions … while following certain ways of exposure to 

thermodynamics. You take specific cases, then you understand things a certain way, which may 

not be complete, and then you try to apply the same understanding to something else, it will not 

be valid. Therefore, it is best to, to understand it at the abstract level and then apply it to specific 

cases. This is called the axiomatic approach. We will do this. At least, I believe in that. 
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Then, we talked about classical versus statistical thermodynamics. We said that for biological 

systems, classical thermodynamics is useful for analysis and design of bioprocess related aspects, 

some biological relations and so on, even inside the cells, as long as, the applications are in the 

continuum regime. 

… We saw what a continuum was. It is a situation where … there are large number of unitary 

particles, say molecules, per unit volume and the substance under consideration can be considered 

as a continuous one. In other words, for example, if you plot the density of the substance versus 

the number of molecules, say, in an enclosure, here until it reaches a certain point, it is going to 



remain a constant density assuming, that the temperature, pressure conditions are constant, and 

so on. And then, after which the number of molecules are so less, that its density at a particular 

point will start fluctuating. So, this is the discrete region, which we are not concerned with in this 

particular course. In fact, classical thermodynamics cannot handle that. It can handle only the 

continuum regime. … To handle this regime, which is very relevant for biological systems, we 

need statistical thermodynamics. 
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With this background, I also told you something about the course philosophy, you know, that it 

is good to know this to know where exactly I am pitching the course. In fact, we did this sometime 

in the beginning of the 4th module. Since this is a review and probably the place for this is here, 

I thought I will present this here. If you look at the number of students in a class on the y-axis 

versus worthwhile achievements – you know, worthwhile achievements does not necessarily 

mean achievements in an exam, … closed kind of an exam or defined exam or something like 

that; I am using this to represent something really worthwhile – then you find, that you typically 

have a Gaussian distribution in a class of a reasonable size, say, about twenty. This distribution, 

you find time and again. Sometimes the tails are little skewed, and so on and so forth, but more 

or less, this distribution remains. 

I have pitched the course at this level, at the level of the average, so that an average student in 

terms of whatever achievements the person has done, which reflects a certain level of application 



of that student, that student will be able to get it with reasonable ease. People here, of course, will 

feel bored, people here would need to do a lot more work. For people here I did assign an exercise. 

It could be done over many months, and it will challenge your curiosity, and so on and so forth 

… whatever you could do, and I will talk about that exercise in a minute. 

But unfortunately, in a situation like this, when it is across a medium, it is a little difficult to 

handle people here; at least I do not know how to handle this, in this particular kind of a medium. 

In a class, what I do is I use cooperative learning techniques where I combine students of different 

achievement levels together. I have my own, own way of doing that. I have my own algorithm to 

do that. I use, you know, the group average CGPA is plus or minus 0.25 of the class average 

CGPA and so on. That works very well for students of lower achievements to pick-up from 

students of higher achievements. And, students with higher achievements also get benefited 

through a better understanding, and so on. That typically works well for me here, but 

unfortunately here, I do not know how to do it. 
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To handle people here I have, I had given an exercise, you can take the exercise for this course 

also. That is, the choose-focus-analyze exercise. Students need to choose a problem of relevance 

to the bio-industry or any human endeavor, and analyze it using the thermodynamics principles 

taught in class. This is an open ended exercise, which has been designed to improve the skills of 

choice, focus and analysis in students. 



A concise report in the format, that you think would best communicate your work, can be 

submitted to me at anytime and by email. That would be evaluated on the following criteria, 

which is: originality in approach, 15 percent; focus level, 15 percent; depth of analysis, 20 

percent; quantum of work, 20 percent; original contribution, 20 percent and presentation, which 

is, if I read it once with reasonable concentration, I must be able to understand it, that is 

communication. That carries 8 percent maybe, and of course, it goes without saying that a shoddy 

looking report is not professional. Therefore, it has to look professional, and that will carry 2 

percent for a total of 10 percent. 
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Those were the preliminaries and then we reviewed whatever you would have picked up in higher 

secondary school, as well as, in your 1st year of engineering. We reviewed that in one class, and 

then, we went on to module 2. 

Module 2 was on additional useful thermodynamic functions. We looked at the thermodynamic 

functions: enthalpy, Helmholtz free energy and Gibbs’ free energy. Then we looked at the 

concept of chemical potential, equations for a closed system, … Maxwell’s relations, Gibbs-

Duhem equation, and thermodynamic analysis of processes in terms of lost work and 

irreversibility. We will see some of these as we rush along here in the review. 



(Refer Slide Time: 11:32) 

 

We saw, that the consequence of the 0th law was temperature; it resulted in the useful variable 

temperature. The consequence of the 1st law is internal energy and the consequence of the 2nd 

law is entropy. 

And we said that T, U, S along with P and V are actually sufficient to thermodynamically describe 

a system. Whereas for the ease of use in certain applications, say processes at constant T or P or 

specific volume, let us define some other thermodynamic properties, is what we said. 
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And with that motivation, we defined enthalpy as a combination of internal energy and PV.  



𝐻 ≡ 𝑈 + 𝑃𝑉  

We defined Helmholtz free energy as a combination of internal energy minus TS  

 

𝐴 ≡ 𝑈 − 𝑇𝑆  

 

and Gibbs free energy as H minus TS. 

 

𝐺 ≡ 𝐻 − 𝑇𝑆  
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And we said, the values of the thermodynamic functions U, S, H, A ,and G, this is a mnemonic 

based on the name … U, S, H, A and G, have a meaning only if the reference state is mentioned. 

This is, again, a kind of a review thing, you know this already. In other words, there is a certain 

set of conditions at which they are assigned a value zero. Of course, one can fix one’s own 

reference state for a particular application. 
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If you are interested in a process, it does not really matter. … what reference state you take does 

not really matter because of this reason. Because, in a process we are interested in delta U, delta 

S, delta H, delta A and delta G, delta referring to the value at a final state minus the value at an 

initial state. For example, delta U would be the value at the final state is, U 2 minus U reference. 

You know, taking the reference value along and the value or the initial state of state 1 is U 1 

minus U reference.  

 

∆𝑈 = (𝑈2 −  𝑈𝑟𝑒𝑓) −  (𝑈1 −  𝑈𝑟𝑒𝑓)  

 

If you take this value, it becomes U 2 minus U 1, anyway. U reference values get cancelled out. 

Therefore, it does not really matter what reference value you choose. But, for any of the values 

at any point to make sense, you need a reference value. In fact, you need to know where it has 

been assigned the value zero. 
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We know that H, A and G, the additional functions are functions of state, which means, they 

depend only on the state of a system, not on the path taken to achieve … state 2 from state 1. And 

also, we said, for terminology purposes we will use the capitals U, S, H, A, G and V … to denote 

specific or per mole quantities. Therefore, if there are n moles of a pure substance in a system, 

the internal energy will be nU, which is also represented as U T and I think, we finally went with 

U T. Its entropy is nS, the number of moles into molar entropy or S T, and so on. 

And the definitions above, U T, S T and so on, are all valid for multi-component systems too, 

since all are extensive properties and the total property is the sum of properties of individual parts 

of the system. 
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Going by that, we said nH equals nU plus P times nV or we are using this terminology, or we use 

this terminology in the later parts of the course. H T, the total enthalpy is U T plus P V T.  

 

𝑛𝐻 = 𝑛𝑈 + 𝑃 (𝑛𝑉)   𝑜𝑟    𝐻𝑇 =   𝑈𝑇 +  𝑃 𝑉𝑇  

 

This is intrinsic, so there is no T here. 

Similarly,  

𝑛𝐴 = 𝑛𝑈 − 𝑇 (𝑛𝑆)     𝑜𝑟   𝐴𝑇 =   𝑈𝑇 −  𝑇 𝑆𝑇  

𝑛𝐺 = 𝑛𝐻 − 𝑇 (𝑛𝑆)     𝑜𝑟   𝐺𝑇 =   𝐻𝑇 −  𝑇 𝑆𝑇  
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Then, we looked at single-component, single phase systems and we said, we could derive this 

equation,  

 

𝑑𝑈 = 𝑇 𝑑𝑆 − 𝑃 𝑑𝑉  

 

for a single phase, single-component system. And we also recognized, that this equation 2.5 

contains only state variables, you know, U, T, S, P and V, state variables of the system whose 

values depend only on the initial and final states of the system, irrespective of the kind of path 

followed to … reach state 2 from state 1. And therefore, you know, we had used some … 

reversible process arguments to get at this, and we said that this equation is valid for any closed 

system irrespective of the assumptions that we made regarding the kind of process to achieve 

this. For example, this could be valid for either irreversible or reversible processes. 

Whereas, the interpretation of T dS as the heat interaction is applicable only to a reversible 

process, the interpretation of P dV as work interaction is possible only for a reversible process. 

You take these two terms, two terms separately, then it is not valid, whereas the whole equation 

is valid for any process. 
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… We had used this nice example of being interested in the difference in heights between points 

1 and 2. We said that there could be some paths through which it would be easier to measure the 

heights as we go along. Therefore, we can choose that path and for example, probably only on 

this path an altimeter is available. Altimeter is used to measure heights. Therefore, we could 

measure heights as we go along this path and therefore, we could measure height here and 

irrespective of this, we could measure height here. And therefore, we could get h 1 minus h 2 or 

h 2 minus h 1. 

Whereas, the altimeters may not be available on the other paths, maybe, you could take a 

helicopter and so on and so forth, or trek through an unchartered territory from 1 to 2. In those 

paths, maybe, a way of measurement of the height is not available, but it does not really matter 

what path you choose, as long as, you are interested in the difference in heights. That is going to 

remain the same irrespective of the path used to go from 1 to 2. This is essentially, a central 

argument in the ways we went about deriving a few useful relationships in thermodynamics. 



(Refer Slide Time: 18:07) 

 

Therefore, these equations are valid for a single-component, single phase system, closed system. 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉  

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃  

𝑑𝐴 =  −𝑆𝑑𝑇 − 𝑃𝑑𝑉  

𝑑𝐺 =  −𝑆𝑑𝑇 + 𝑉𝑑𝑃  
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We also said that those are for 1 mole. Even … if the number of moles increases, as long as it is 

a … pure component closed system, you could write the same kind of equations for U T, S T, H 

T, A T and G T and V T; proof is given in Denbigh. Therefore,  

 

𝑑𝑈𝑇 = 𝑇𝑑𝑆𝑇 − 𝑃𝑑𝑉𝑇  

𝑑𝐻𝑇 = 𝑇𝑑𝑆𝑇 + 𝑉𝑇𝑑𝑃  

𝑑𝐴𝑇 =  −𝑆𝑇𝑑𝑇 − 𝑃𝑑𝑉𝑇  

𝑑𝐺𝑇 =  −𝑆𝑇𝑑𝑇 + 𝑉𝑇𝑑𝑃  
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Then we looked at multi-component, single phase system, … or multi-component homogeneous 

system. We said n 1 would be the number of moles of component 1, n 2 would be the number of 

moles of component 2, and so on. 
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… We saw this very fundamental definition,  

(
𝜕𝑈𝑇

𝜕𝑛𝑖
)

𝑉𝑇,  𝑆𝑇,  𝑛𝑗

  ≡   𝜇𝑖  



This is pretty much the way it is predominantly used, although there could be other definitions of 

the chemical potential, because it is much easier to keep T, P and n j constant while doing an 

experiment to probably measure this. … Also, we saw, that although the chemical potential has 

been introduced in the context of a multi-component system, it is an intrinsic thermodynamic 

quantity, a very basic quantity and it is an equally valid concept for a pure component also. 
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Therefore, for a multi-component, single phase system, we extended the argument to come up 

with these equations that are valid.  

 

𝑑𝑈𝑇 = 𝑇 𝑑𝑆𝑇 −  𝑃 𝑑𝑉𝑇 +   ∑ 𝜇𝑖 𝑑𝑛𝑖𝑖   

𝑑𝐺𝑇 = −𝑆𝑇 𝑑𝑇 +  𝑉𝑇 𝑑𝑃 +   ∑ 𝜇𝑖 𝑑𝑛𝑖𝑖    

𝑑𝐻𝑇 = 𝑇 𝑑𝑆𝑇 +  𝑉𝑇 𝑑𝑃 +   ∑ 𝜇𝑖 𝑑𝑛𝑖𝑖   

𝑑𝐴𝑇 = −𝑆𝑇 𝑑𝑇 −  𝑃 𝑑𝑉𝑇 +   ∑ 𝜇𝑖 𝑑𝑛𝑖𝑖   

 

And, by repeated use, you might remember some of these. 
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And then, by comparison of the various partial derivatives, for example, this is nothing but  

(
𝜕𝑈𝑇

𝜕𝑆𝑇 )
𝑉𝑇,  𝑛𝑖

      (
𝜕𝑈𝑇

𝜕𝑉𝑇)
𝑆𝑇 ,  𝑛𝑖

               (
𝜕𝑈𝑇

𝜕𝑛𝑖
)

𝑉𝑇,𝑆𝑇,   𝑛𝑗

  

and so on. 
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Going by the expansion or the total derivative in terms of the partial derivatives, we could write 

the various expressions as, temperature as this, pressure as this, enthalpy as this, specific volume 

as this and the chemical potential as  

 

𝜇𝑖 =  (
𝜕𝑈𝑇

𝜕𝑛𝑖
)

𝑉𝑇,𝑆𝑇,   𝑛𝑗

=  (
𝜕𝐺𝑇

𝜕𝑛𝑖
)

𝑇,  𝑃,   𝑛𝑗

=   (
𝜕𝐻𝑇

𝜕𝑛𝑖
)

𝑆𝑇,  𝑃,   𝑛𝑗

=  (
𝜕𝐴𝑇

𝜕𝑛𝑖
)

𝑇,𝑉𝑇,   𝑛𝑗
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Then, we derived a fundamental equation, the Gibbs-Duhem equation, which says,  

 

−𝑆𝑇 𝑑𝑇 +  𝑉𝑇 𝑑𝑃 −  ∑ 𝑛𝑖 𝑑𝜇
𝑖𝑖 = 0  

 

This gives relationship between simultaneous variations of temperature, pressure and chemical 

potential. 
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… Then, applying the reciprocity relationship, you know, taking two at a time and the reciprocity 

relationship given by the mathematics, mathematical theorem, we could get very useful 

relationships, which was  

 

(
𝜕𝑇

𝜕𝑉𝑇)
𝑆𝑇,  𝑛𝑖

=      −  (
𝜕𝑃

𝜕𝑆𝑇)
𝑉𝑇,  𝑛𝑖

  

 

and so on. 
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I am not going to read those out they are useful expressions which can be used to represent not 

so easy to measure thermodynamic variables in terms of easy to measure thermodynamic 

variables, such as P, T and V. 

And these equations, 2.26 to 2.31, which we obtained through application of the reciprocity 

relationship to equations that are applicable to a closed system, are called Maxwell’s relations. 
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This is what I just mentioned. We could represent UT, ST, HT, AT, GT which are not so easily 

measurable in terms of T, P and VT, which are easily measurable by using these Maxwell’s 

relations. 
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And what you will find in your textbook predominantly … are Maxwell’s relations for 1 mole of 

a pure substance.  And that is this, which you can also get by the earlier relations that we gave, 

except that we do not consider ni and T as the total values and so on, since this is 1 mole of a 

pure substance. 
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Apart from these, other useful thermodynamic variables or measurable thermodynamic variables 

are heat capacities. This we already know,  

𝐶𝑃 ≡   (
𝜕𝐻

𝜕𝑇
)

𝑃
  

Or    (
𝜕𝐻𝑇

𝜕𝑇
)

𝑃
 

for any system. This is for a pure substance molar value. Similarly,  

 

𝐶𝑉 ≡   (
𝜕𝑈

𝜕𝑇
)

𝑉
  

Or,     (
𝜕𝑈𝑇

𝜕𝑇
)

𝑉
 

for any system. 
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Similarly, we would also have expansivity and compressibility as useful thermodynamic 

variables. Expansivity,  

 

𝛼  ≡   (
1

𝑉
) (

𝜕𝑉

𝜕𝑇
)

𝑃
  

 

and isothermal compressibility, as it is called, because T is constant here, is defined as  

 

𝜅  ≡  − (
1

𝑉
) (

𝜕𝑉

𝜕𝑃
)

𝑇
  

 

that is, kappa. 
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Then, we looked at maximum work and lost work. We saw, that maximum work could be 

expressed as  

𝑊𝑚𝑎𝑥  =  𝑇0(𝑆2 −  𝑆1) – (𝑈2 −  𝑈1) 

 

The maximum possible work for a closed system is this expression; it can be used for making 

some quick estimates, and to evaluate back of the envelope and to do back of the envelope 

evaluations for claims on certain designs, and so on and so forth. If somebody is saying, that they 

can get so much work, you can just quickly do a calculation, if you know these values, rules of 

thumb values, and use that to make a quick decision and so on. Since this is the maximum work, 

the lost work was ideal or reversible work minus the actual work, … which we derived as  

 

𝑊𝑙𝑜𝑠𝑡 =  𝑇0 𝜖  

 

epsilon is the entropy created. 
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Then, we looked at open systems and we came up with an energy balance equation for open 

systems. This is for the output streams, enthalpy, this is the internal energy term velocity squared 

term, and the potential energy term, and the other energies here. This is for the inlet streams, 

outlet minus inlet, plus the time variation of the system energy equals Q dot minus … W S dot. 

And for each of these cases we had worked out examples to see how you can apply or use these 

expressions in practical situations. 
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Then module 3 was on thermodynamic properties of pure fluids. We first reviewed an ideal gas. 

We looked at non-ideal gas, fugacity, fugacity coefficient, then equations of state or PVT 

behavior, and various equations of state, such as virial and cubic equations of state. Then, we 

looked at generalized correlations, residual properties, estimation of thermodynamic properties 

using equations of state and estimation of fugacity coefficient. 
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Let me just point out a few as we go along this. This was our definition of an ideal gas in terms 

of the chemical potential, and hopefully, you would have realized that this is pretty much the 

backbone of this course. We have written all in terms of the chemical potential and used that to 

relate various aspects. Here,  

𝜇 =  𝜇0  +  𝑅 𝑇 𝑙𝑛 𝑃  

for an ideal gas; mu naught is a function of temperature alone. And ideal gas is therefore, one 

whose chemical potential at constant temperature is a linear function of the logarithm of its 

pressure. There are some gases, as we know, that approximate well to ideal gases. 
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Most gases do not; they are all non-ideal or real. For them  

𝜇 =  𝜇0  +  𝑅 𝑇 𝑙𝑛 𝑓              
𝑓

𝑃

 
→ 1       𝑎𝑠 𝑃 

 
→  0  

f by P is actually the fugacity coefficient phi. 

𝑓

𝑃
 ≡  ∅  
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Now, the equations of state, equations of state is nothing but the relationship between P V and T 

for a pure substance. If we define  

 

𝑃𝑉

𝑅𝑇
 ≡   𝑍  

 

the compressibility factor, then this is one of the virial equations of state in terms of pressure,  

 

𝑍 = 1 +  𝐵2 𝑃 +  𝐵3𝑃2 +  𝐵4𝑃3 +  𝐵5𝑃4 +  …  

 

It is a power series expansion. 
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And you could also write the expansion in terms of specific volumes …. Since the pressures were 

directly related, the specific volumes would be inversely related.  

 



𝑍 =  1 +  
𝐶2

𝑉
+  

𝐶3

𝑉2 +  
𝐶4

𝑉3 +  
𝐶5

𝑉4  

 

These coefficients can actually be calculated from statistical mechanics theory. 
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Then, we saw cubic equations of state. Now, the equations of state, the virial equations can 

describe the gas phase alone well. The cubic equations can do both, gas phase and liquid phase, 

well. You could apply it anywhere, but if you are applying the virial equations, then be a little 

careful, that is all I am trying to say here, across states, that is. The Van der Waals equation, that 

you have already seen is nothing but a cubic equation  

 

𝑃 =
𝑅𝑇

𝑉−𝑏
−  

𝑎

𝑉2  

 

a and b are constants for a pure substance. 
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The other popular equation, that we saw somewhat extensively in this course is the Redlich-

Kwong equation,  

 

𝑃 =
𝑅𝑇

𝑉−𝑏
−  

𝑎

𝑇0.5  𝑉 (𝑉+𝑏)   

 

and you have expressions for a and b from which we can calculate that. 



(Refer Slide Time: 30:31) 

 

The generalized correlations are … something like this. We have ideal gas law, we have virial 

equations applicable to a wider variety of gases, typically, and cubic equations applicable to gas 

or liquid states of a pure substance, with more ease. We apply this too, but this is with more ease. 

And now, the generalized correlations are something, that are applicable to all gases in general 

and the generalized correlations are given in terms of reduced properties, which are nothing but 

the ratio of the actual property to its critical value. 
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For example, reduced pressure Pr is P by Pc; reduced temperature Tr is T by Tc and reduced 

molar volume is V by Vc. This is the way to write the Redlich-Kwong equation in a generalized 

form. We went up about showing how to do this. 
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Then, we looked at the three parameter theorem, which essentially says, that three parameters are 

good enough. To use the three parameter theorem, we have this formulation Z, the compressibility 

factor, can be written as some  

 

𝑍 =  𝑍0 +   𝜔 𝑍1  

 

Omega for a substance, and Z naught and Z 1 under various conditions are given as tables. 

Therefore, this becomes easier to use in the real context. 
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We could use something called residual properties to estimate other thermodynamic properties 

that are not easily measurable. 

(Refer Slide Time: 32:13) 

 

And the residual properties are nothing, but the difference between the actual value and the ideal 

value.  

 

𝑉𝑅 ≡   𝑉 −  𝑉𝑖𝑔 = 𝑉 −  
𝑅𝑇

𝑃
 =   

𝑅𝑇

𝑃
(𝑍 − 1)  



 

You could write the residual property for any extensive property, U, S, H, A, G or V. 
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These are the expressions, that we derived after lengthy derivations.  

 

(
𝐺𝑅

𝑅𝑇
) =  ∫ (𝑍 − 1)

𝑃2

𝑃𝑟𝑒𝑓

𝑑𝑃

𝑃
  

 

(
𝐻𝑅

𝑅𝑇
) =  − 𝑇 ∫ (

𝜕𝑍

𝜕𝑇
)

𝑃

𝑃2

𝑃𝑟𝑒𝑓

𝑑𝑃

𝑃
  

 

(
𝑆𝑅

𝑅
) =  − 𝑇 ∫ (

𝜕𝑍

𝜕𝑇
)

𝑃

𝑃2

𝑃𝑟𝑒𝑓

𝑑𝑃

𝑃
−  ∫ (𝑍 − 1)

𝑃2

𝑃𝑟𝑒𝑓

𝑑𝑃

𝑃
  

 

Therefore, you can use this to get at the reduced value. 
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If you know the ideal gas value, to get the actual value, all you need to do is add them both, just 

by definition. Or for a process, we could do the deltas too. 
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Then you have a generalized correlation based on residual properties. … To do that, we recognize 

that P equals PcPr and therefore, dP equals Pc times dPr. You can do the same thing for 

temperature. 
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… If you substitute these in the expressions that we had, the residual value expressions that we 

had derived in the previous slide, shown in the previous slide, you get the generalized correlations 

in terms of the residual values, which are the same form, but in terms of the residual properties. 
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…You could use this same formulation to make it more useful in a practical context. Also,  

 



𝐻𝑅

𝑅 𝑇𝑐
=  

(𝐻𝑅)0

𝑅 𝑇𝑐
+   𝜔 

(𝐻𝑅)1

𝑅 𝑇𝑐
  

 

You have H R naught by R T c and H R 1 by R T c values tabulated. That is what make it easier 

to use, especially these tabulations are available in your textbook itself. 
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Then, we figured out how to get at the fugacity coefficient from the P, V, T data. This is the final 

expression,  

 

ln(∅1) =  ∫ (
𝑉

𝑅 𝑇
−  

1

𝑃
)  𝑑𝑃

𝑃1

0
  

 

In terms of the compressibility factor, it is  

 

ln(∅1) =  ∫ (
𝑍 − 1

𝑃
)  𝑑𝑃

𝑃1

0
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Then, we went to module 4, which was on thermodynamic properties of solutions. Earlier it was 

pure substance, now it is solutions, which is nothing but a mixture of pure substances. We looked 

at the conditions for an ideal and non-ideal solution in terms of chemical potential. Then, partial 

molar properties, excess properties of mixtures, activity coefficient and its estimation. 
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When pure substances are mixed together, there could be changes in volume and enthalpy upon 

mixing. So, that is what makes things either ideal or non-ideal. If there is a change, it becomes a 

regular solution or non-ideal solution. If there is no change, it becomes … an ideal solution. 
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Then, we introduced the concept of perfect mixture of gases. You know, this is, we said a concept 

and we have used this concept quite a few times to develop ideas. A perfect mixture of gases is 

something for which the chemical potential of each of its component can be represented as  

 

𝜇𝑖 =  𝜇𝑖
0 +  𝑅 𝑇 𝑙𝑛 𝑝𝑖  

 

p i is the partial pressure. … 
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Whereas, for an imperfect mixture of gases, the chemical potential of each component i is 

expressed as  

 

𝜇𝑖 =  𝜇𝑖
0 +  𝑅 𝑇 𝑙𝑛 𝑓𝑖           

�̂�𝑖

𝑝𝑖

 
→ 1   𝑎𝑠 𝑃 

 
→  0  

 

which is the fugacity of that component in that mixture. mu i naught is a function of temperature 

alone. 



(Refer Slide Time: 37:20) 

 

 

�̂�𝑖

𝑝𝑖
  ≡  ∅𝑖  

 

the fugacity coefficient of i. For an imperfect gas mixture, based on these definitions, you could 

write  

 

𝜇𝑖 =  𝜇𝑖
0 +  𝑅 𝑇 𝑙𝑛 ∅𝑖𝑝𝑖   = 𝜇𝑖

0  +  𝑅 𝑇 𝑙𝑛 ∅𝑖 𝑃𝑦𝑖  
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Now, an ideal solution is one for which each component chemical potential can be written as 

  

𝜇𝑖 =  𝜇𝑖
# +  𝑅 𝑇 𝑙𝑛 𝑦𝑖  

 

mu i hash is both a function of temperature and pressure, the standard value. But in this case, … 

unlike the cases that we have seen earlier in an ideal gas and perfect mixture and so on, mu i hash 

is a function of temperature and pressure. Also note, that mu i hash need not necessarily be equal 

to 𝜇𝑖
0 +  𝑅 𝑇 𝑙𝑛 𝑃. 
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For ideal solutions of liquids and solids, you could write, 

 

𝜇𝑖 =  𝜇𝑖
# +  𝑅 𝑇 𝑙𝑛 𝑥𝑖  

 

where x i is the mole fraction of the component in a liquid or a solid mixture. In terms of 

fugacities,  

 

𝜇𝑖 =  𝜇𝑖
# +  𝑅 𝑇 𝑙𝑛 𝑓𝑖  

 

𝜇𝑖 =  𝜇𝑖
0 +   𝑅 𝑇 𝑙𝑛 𝑓𝑖𝑥𝑖  
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For a non-ideal gas solution, we can write,  

 

𝜇𝑖 =   𝜇𝑖
# +   𝑅 𝑇 𝑙𝑛 ∅𝑖𝑦𝑖  

 

𝜇𝑖 =   𝜇𝑖
0 +   𝑅 𝑇 𝑙𝑛 ∅𝑖𝑃𝑦𝑖  

 

For a non-ideal liquid or a solid solution, you have a gamma coming in;  

 

𝜇𝑖 =   𝜇𝑖
# +   𝑅 𝑇 𝑙𝑛 𝛾𝑖𝑥𝑖   𝑎𝑛𝑑 𝛾

𝑖

 
→ 1 𝑎𝑠  𝑥𝑖

 
→ 1  

which is, in terms of the other variables,  

 

𝜇𝑖 =   𝜇𝑖
0 +   𝑅 𝑇 𝑙𝑛 𝛾𝑖𝑓𝑖𝑥𝑖  

Gamma i, the activity coefficient, is a function of temperature, pressure and composition. 



(Refer Slide Time: 39:45) 

 

This works well for many liquid solutions, except if the component is of different phases at 

different mole fractions. For example, at a low mole fraction it could be a liquid and the solution 

at a high mole fraction or pure substances, actually a solid, maybe, glucose, or it could be a gas 

as in oxygen. If that is the case, then we need a special formulation and that formulation was as 

follows.  

  𝜇𝑜 =  𝜇𝑜
# +  𝑅 𝑇 𝑙𝑛 𝛾

𝑜
𝑥

𝑜
       𝑎𝑛𝑑 𝛾

𝑜

 
→ 1 𝑎𝑠  𝑥𝑜

 
→ 1  

 

for the solvent, and for the solute  

 

  𝜇𝑖 =  𝜇𝑖
# +  𝑅 𝑇 𝑙𝑛 𝛾

𝑖
𝑥

𝑖
       𝑎𝑛𝑑 𝛾

𝑖

 
→ 1 𝑎𝑠  𝑥𝑖

 
→ 0  

 



(Refer Slide Time: 40:35)  

 

This was the Lewis and Randall rule. … This was powerful because the fugacity of the component 

in solution, f i hat, is nothing but the product of the mole fraction and the fugacity of the pure 

component, and this can happen only in ideal solutions.  

 

𝑓𝑖 = 𝑦𝑖𝑓𝑖
   

 

This is the Lewis and Randall rule. 
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Since solutions are not ideal, to represent appropriate properties, we need partial molar properties, 

which are defined as  

 

�̅�𝑖
𝑇 ≡   (

𝜕𝑀𝑇

𝜕𝑛𝑖
)

𝑇,  𝑃,  𝑛𝑗

  

 

We could define partial molar properties for any of these, and our representation was M i T hash. 

… This is the reason why we bring about partial molar properties. The total property is nothing 

but the weighted sum of the partial molar properties, weighted with its number of moles. 
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We had the complete set of partial molar properties here - total volume in terms of the partial 

molar volume; total internal energy in terms of the partial molar internal energy and so on … till 

total Gibbs free energy, in terms of the partial molar Gibbs free energy. 
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And then, we also saw how to estimate partial molar properties from experimental data. We saw 

that from mixing experiments, which can be represented as change in volume with a certain mole 

fraction, you get a curve like this. If you are interested in the partial molar volume at E, then you 

take this point on the curve at E, draw a tangent to the point there, the slope with the intercept 



here, CA, would actually give us the difference between V 1 T hash, the partial molar property 

and … the molar property at 1. Since you know the molar property at 1, you could find the partial 

molar property. Similarly, you could do it for the other, V 2 T hash for a binary system, that is, 

in terms of this other intercept D B. 
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Then, we looked at excess properties and also looked at activity coefficients. Excess properties 

are nothing but the difference between the actual and the ideal properties. The same way as 

residual properties were for pure substances, we have excess properties for solutions. 
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We got some useful relationships,  

 

𝑑𝐺𝑇,𝐸

𝑅 𝑇
  =   ∑ 𝑙𝑛 𝛾𝑖  𝑑𝑛𝑖  

 

(
𝜕

𝐺𝑇,𝐸

𝑅 𝑇

𝜕𝑛𝑖
)

𝑇,  𝑃,  𝑛𝑗

 =  𝑙𝑛 𝛾𝑖  
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We saw various models, the Margules model, the Redlich-Kister model, van Laar model, and the 

Wilson model for activity coefficients in a binary system alone. 
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Then, we looked at module 5, which was on phase equilibrium. We looked at the criteria.  If there 

is one take home message, that is the criteria for phase equilibria, from this course. Then, we 

looked at phase rule, Clausius-Clapeyron equation and the various equilibria, VLE, LLE, SLE, 

standing for vapour-liquid equilibrium, liquid-liquid equilibrium and solid-liquid equilibrium. In 

fact, we saw liquid-liquid equilibrium and solid-liquid equilibrium as examples of application of 

the general criteria for phase equilibrium. 
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This is the … one take home message, if you want to remember many years after this course. … 

At equilibrium, these conditions need to be satisfied, or at thermodynamic equilibrium you need 

satisfaction of thermal equilibrium, mechanical equilibrium and chemical equilibrium as given 

from equations 5.3 and so on. 

This says that the temperature of the various phases in equilibrium must be equal for thermal 

equilibrium; the pressures of the various phases in equilibrium must be equal for mechanical 

equilibrium; and the chemical potential of each of the species in the various phases must be equal. 

 

𝜇1,𝛼 =  𝜇1,𝛽  =  𝜇1,𝛾 = ⋯  

𝜇2,𝛼 =  𝜇2,𝛽  =  𝜇2,𝛾 = ⋯  

𝜇3,𝛼 =  𝜇3,𝛽  =  𝜇3,𝛾 = ⋯  

and so on. 
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The degrees of freedom, the number of variables required to specify the state of the system can 

be obtained from the phase rule,  

𝐹 =  (𝐶 −  π + 2)  
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And this was our Clausius-Clapeyron equation, which is valid for phase changes,  

 

𝑑𝑃

𝑑𝑇
=  

𝐿

𝑇 ∆𝑉
  

 

L is the latent heat for the phase change by the temperature at which the phase change is occurring 

by the change in the molar volume of the two phases. It is valid for any phase change, and it can 

be interpreted as the change in pressure per unit change in temperature that is needed to maintain 

phase equilibrium. 
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Then, we saw conditions for vapour-liquid equilibrium from the basic conditions for equilibrium. 

… For a single component system, it was f, the fugacity of the component in the vapour phase 

must equal, this is for a pure component, therefore the fugacity of the vapour phase must equal 

the fugacity of the liquid phase and say, that is equal to f sat. 

𝑓𝑣 =  𝑓𝑙  = 𝑠𝑎𝑦,  𝑓𝑠𝑎𝑡  
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And in a multi-component system we saw, that the fugacity of the component in the vapour phase, 

f i V hat, … must equal the fugacity of the component i in the liquid phase.  

 

𝑓𝑖
𝑣 =  𝑓𝑖

𝑙  

 

And in terms of the expansions, we could get a useful relationship,  

 

∅𝑖𝑃𝑦𝑖 =  𝛾𝑖𝑓𝑖𝑥𝑖  
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For liquid-liquid equilibrium, such a relationship is as follows,  

 

𝛾𝑖
𝑙1𝑓𝑖

𝑙1𝑥𝑖
𝑙1  =   𝛾𝑖

𝑙2𝑓𝑖
𝑙2𝑥𝑖

𝑙2  
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Similarly, in the solid-liquid equilibrium, again from the basic condition, that the fugacities must 

be equal, we get gamma i of the solid phase, f i solid, z i, the mole fraction in the solid phase, 

must equal gamma i in the liquid phase, f i in the liquid phase and the mole fraction in the liquid 

phase. 

 

𝛾𝑖
𝑠𝑓𝑖

𝑠𝑧𝑖
 =   𝛾𝑖

𝑙𝑓𝑖
𝑙𝑥𝑖
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Then, we looked at the conditions for reaction equilibria. This, follows from the phase equilibria, 

so this could also be a take home message: summation of nu i mu i equals 0. Then, we looked at 

ways to evaluate the equilibrium constant, effect of pressure and temperature on the equilibrium 

constant, and something to do with ionic equilibria, the formulation for that, at least, in the last 

class.  
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So, this is the condition for equilibrium: If you take the free energy, the Gibbs’ free energy as a 

function of the reaction coordinate at the condition of equilibrium, the slope of that curve must 

be 0. Therefore,  

 

∑ 𝜈𝑖𝜇𝑖𝑖 = 0  

 

This is the basic condition for reaction equilibrium. 
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And if there are R reactions, independent reactions that take place in a system, for each of those 

R reactions, you could write one such equation. Therefore, R such equations will define the 

equilibrium of that system. 
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For the phase rule, we just saw that the phase rule for a non-reacting system just gets modified 

by a minus R for a reacting system. Number of degrees of freedom reduces by the number of 

independent equations in that system. 
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Then, we defined the various equilibrium constants. I would like to you see that on your own Kp, 

Kc and Ky. We also wrote the relationships between the various variables. And, this was the 

temperature dependence of K P –  

 

𝑑 ln 𝐾𝑃

𝑑𝑇
=  

∆𝐻

𝑅 𝑇2  



It was the Vant Hoff equation. We could also do that for Kf, which is the equilibrium constant in 

terms of fugacities. 

Then, we saw the equilibrium constant for reactions occurring in liquid and solid solutions too as 

this. And finally, some formulations for electrolytes we have seen, which is … I will just give 

you the condition for ionic equilibrium and I will stop there. We also looked at some temperature 

dependences. But, the condition of ionic equilibrium was  

 

𝜇𝑢 =  𝜈+𝜇+ +    𝜈−𝜇−  

 

Let us stop … the review here. I hope that the course was useful, and you can always write back 

to me if you have any queries.  

 

See you then. 

 

 


