
Thermodynamics for Biological Systems: 

Classical and Statistical Aspects 

Prof. G.K. Suraishkumar 

Department of Biotechnology 

Indian institute of Technology - Madras 

 

Lecture – 52 

Electrolytes 

 

Welcome back!  

We are looking at module number 6, which is on Reaction Equilibria.  We had looked at the 

conditions for reaction equilibria, and then, the equilibrium constants, the temperature/pressure 

dependence of the equilibrium constant. And then, we worked out a few problems with which we 

reviewed or we are brought back to memory, if you can call it so, whatever has been learnt in the 

earlier classes starting with higher secondary.   

Today is pretty much the last class on module 6.  The next class will be a review for the entire 

course.  

In this class, let us look at a formalism for handling electrolytes.  Why do we need to look at 

electrolytes at all?   
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Why are we looking at electrolytes at all?  Because, most biological systems deal with charged 

species and ionic solutions.  Even if you go back to the three examples that we considered one 

after another in the last couple of classes, you would have seen the occurrence of ionic species 

all over there.  There was ATP, the NADH was a charged species, we talked about half reactions, 

reduction potentials, and so on, and so forth. 

And if you look around, and see many reactions that occur in the cell, you would see the 

occurrence of ionic species in them.  Not just that; the cytoplasm itself – … the cell envelope and 

what is inside apart from the organelles is the cytoplasm –  it is filled with ionic species. If you 

look at some of the major biomolecules … you know there are four major types of biomolecules, 

as you can recall – carbohydrates, proteins, lipids and nucleic acids. And out of these, if you look 

at lipids and proteins predominantly, and even the other types in some specialized cases, they all 

have charges on them. 

For example, lipids – as you know, the lipid bilayer is the one that is essential, for the functionality 

of the cell membrane.  And what exactly is a lipid? It is a charged species; it has these tails, the 

hydrophobic tails, and the hydrophilic head; the hydrophilic head has a charge on it.  … You 

would have heard examples of lipids on the membrane, and most of them are charged species, 

and that kind of a structure is necessary for its function. Similarly, proteins … amino acids that 

make up the proteins, have charged side groups on them. 

And even some of the other groups could be charged depending on the pH at which they operate.  

… If you put a sequence of amino acids together, as in the case of a protein, the protein molecule 

is definitely charged. Nucleic acids are charged. And some carbohydrates are certainly charged. 

Therefore, you find charges in all these basic constituents of bio systems, the biomolecules. 

Therefore, we certainly need to look at the charges. If you want even further motivation, the 

processes involving electrolytes are used to separate and analyze DNA or proteins. 

… We typically run gels, in which we separate out the various paths of the DNA analyze them, 

various proteins in a protein mixture analyze them and so on, and so forth. So, all these are 

electrically active processes, involving electrolytes. Therefore, it is important to know the 

formalism for handling electrolytes, from a thermodynamics view point also. This is a slight 

extension of what you would find in your text book.  In fact, you will not find electrolytes in 

Smith, Van Ness and Abbott. 



Nevertheless, I thought since this is the last class, I will take the liberty of introducing you to 

something slightly beyond your syllabus. It certainly falls into the scope of the course. And it will 

be good to know. 
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Let us consider the electrolyte – as you know, electrolyte is any species that is charged – and let 

us represent the electrolytes as 𝑀𝜈+𝐴𝜈− (M  nu plus A nu minus). M could be the positively 

charged species, A could be the negatively charged species. nu plus is the number of positive 

charges associated with M. nu minus is the number of … negative charges, associated with A, 

and together they could be an uncharged species, also. Not necessarily, but they could uncharged 

also. 

So, this, when it is a dropped into a solution for example, when it is taken in a solution form, it 

dissociates as follows to give you nu plus molecules or if you take one molecule of M nu plus A 

nu minus, it will dissociate in an aqueous solution, for example, to give you nu plus molecules of 

M z plus and nu minus molecules of A z minus by the stoichiometry of the whole thing; this is 

nothing but material balance, …. So, if you extend that to moles – …we talked of molecules, an 

Avogadro number of molecules is a mole. 

And therefore, one mole of M nu plus A nu minus gives you nu plus moles of M z plus, the 

positively charged species in the electrolyte, and nu minus moles of the negatively charged 



species in the electrolyte. We will get a little more comfortable with this terminology in a little 

while.  Please wait till then. It is good to introduce it in a generic form here.  

 

𝑀𝜈+𝐴𝜈− ⇌  𝜈+𝑀𝑧+ +  𝜈−𝐴𝑧−  

 

Let us call this equation 6.51. … For completeness, nu plus and nu minus are the numbers of 

positive and negative ions, respectively, from one molecule of the parent electrolyte. 

z plus and z minus are the number of ionic charges. … Of course, as you will see soon, this nu 

plus and z plus need not always be equal. Similarly, nu minus and z minus need not always be 

equal. Nu is the stoichiometric part, and z is a number of charges associated with each molecule.  

 

 

 

 

To understand the terminology a little better, let us work out an example, in the same fashion that 

we have been doing so far. For that, let us consider a relevant system here. The following reaction 

system is important in the pH maintenance in the media of cultured mammalian cells, the 

bicarbonate system. For example, you may have come across mammalian cell culture. 

Mammalian cells are cultured in … many different vessels for example, they are passaged in 



what is called a T flask, a tissue culture flask, which is typically placed inside a carbon dioxide 

incubator. 

You have a supply of carbon dioxide to that incubator. Incubator is something that maintains the 

temperature, humidity conditions, and in this case, carbon dioxide is also supplied to the 

incubator. Why is it supplied because, that is essential for maintaining the pH of the solution to 

be in a very narrow range of, let us say 6.8 to 7.2, or even finer. That is the wide range over which 

many mammalian cells are even alive. Below 6.8, they are all gone, and above 7.4 they are gone. 

Typically, the bicarbonate system, which involves the equilibrium of a bicarbonate salt in the 

medium with the carbon dioxide that is supplied in a gas form, is necessary to maintain the pH 

of the solution. 

I will show you the reactions, and then I will let you figure out how the pH is maintained on your 

own. You just need to go and look at the bicarbonate buffer system, for mammalian cell culture. 

You can do a search; you can look at any books on mammalian cell culture – that is one of the 

first things that will be covered there. The question here is relevant to whatever we are doing 

here. It is to find nu plus z plus nu minus and z minus. The reactions are  

𝐻2𝐶𝑂3 ⇌  𝐻+ +  𝐻𝐶𝑂3
−  

𝐻𝐶𝑂3
− ⇌  𝐻+ +   𝐶𝑂3

2−  

These, in fact, are the reactions … that play a role to maintain the pH in the mammalian cell 

medium in a narrow range. … Because, when the mammalian cells are going to grow, … they 

are going to produce lactic acid. Lactic acid is … going to move from the inside of the cell to 

outside of the cell, into the medium. If there is acidification due to lactic acid, the pH is going to 

drop. Therefore, the medium should be able to withstand at least a reasonable acidification or the 

addition of acidic ions, lactic acid H plus ions, to the medium, and that is done this way. 

Similarly, on the other side … if the pH goes up … due to some means, then this medium must 

be able to handle that. I am not getting into the mechanism of the bicarbonate buffer itself. That, 

… I am leaving to you as some additional reading. You can go ahead and do it. … For now, 

please find nu plus, z plus, nu minus, and z minus. Take about 10 minutes to do it. Go ahead, 

please. 
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It is essentially an exercise to get comfortable with the terminology, the stoichiometric 

coefficients, as well as the number of charges that are associated with these molecules. The 

reactions that we are considering here are H2CO3 going to H plus and HCO3 minus; that is the 

first reaction. So, for that, you need to write nu plus, z plus, nu minus, z minus. You would have 

done that. And, do the same for the second reaction. 

 

 

 

 

The solution is reasonably straight forward. Just by comparison, you can see that  



𝜈+ = 1,   𝑧+ = 1,   𝜈− = 1,   𝑎𝑛𝑑  𝑧− = −1  

If you wondering … where this came from, for the first reaction … nu plus is the stoichiometric 

coefficient of the positively charged species, that is 1 here. Therefore, nu plus is 1. There is one 

charge associated with the positively charged species. Therefore, z plus is 1. nu minus is again 1 

here, the stoichiometric coefficient of the negatively charge species. And, z minus – there is one 

negative charge associated here. Therefore, z minus is 1.  

In contrast, here … z minus is minus 1 because … that is the convention we follow; we add the 

sign also to the number. Therefore, z minus is taken as minus 1 here. In contrast here, z minus 

would become minus 2 as we will see in the solution given. For the second reaction please go 

ahead, and check. You would have already gotten this;  

𝜈+ = 1,    𝑧+ = 1,    𝜈− = 1,   𝑎𝑛𝑑  𝑧− = −2  

by the same logic as a first reaction, but z minus is actually minus 2. 
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 Now, the components of the solution – that is what we are going to look at – that the solution, 

let us say, contains M moles of the electrolyte … you know how we represent our electrolyte – 

M plus nu plus A minus nu minus – electrolyte dissolved in n 0 moles of the solvent. If this is the 



situation, this is how we will represent things, electrolytes and our formulations. n moles of an 

electrolyte dissolved in n 0 moles of the solvent. 

If that is so, then the notation is n 0 is the moles of the solvent, that is as given here. m plus is 

taken to represent the moles of the positive ions, M z plus. m minus is taken to represent the 

moles of the negative ions, A z minus, and m u is the moles of the un dissociated electrolyte, M 

nu plus A nu minus. Now, the reaction that we saw earlier,  

𝑀𝜈+𝐴𝜈− ⇌  𝜈+𝑀𝑧+ +  𝜈−𝐴𝑧−  

The number of moles of this that exist at equilibrium, when the dissociation has taken place is 

called m u. And this results from adding m moles of an electrolyte, which could be of course, 

different from m u, to n 0 moles of the solvent. That is the system that we are considering. 

Now, from the stoichiometry as given here, it is quite easy to see that the number of moles of 

positive ion as represented by M plus is nothing but, nu plus because, one mole of this results in 

nu moles of the positive ion; nu plus times m, m is the total number of moles with a electrolyte, 

minus the moles of the un dissociated electrolyte. … If m u is what is remaining here, m minus 

m u must have converted to this. … One mole of this gives you nu plus moles of this, and 

therefore, m plus equals nu plus into m minus m u. Similarly, m minus would be nu minus into 

m minus m u;  

 

𝑚+ =  𝜈+ (𝑚 −  𝑚𝑢)  

𝑚− =  𝜈− (𝑚 −  𝑚𝑢)  

 

equations 6.52 and 6.53. 
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Now, let us get to a thermodynamics thing. Let us look at the chemical potentials involved. 

Equation 2.15, one of the basic equations … you will remember that when you see that written 

here. If you write equation 2.15 which involves Gibbs free energy, total Gibbs free energy written 

for our current system of an electrolytic solution, would be d G T equals – yeah, now it is coming 

back to you – minus S T d T plus V T d p plus sum over i mu i d n i. 

Going by our terminology, and writing each one of those terms separately, we get  

 

𝑑𝐺𝑇 =  − 𝑆𝑇𝑑𝑇 +  𝑉𝑇𝑑𝑃 +   𝜇+𝑑𝑚+ +   𝜇−𝑑𝑚− +   𝜇𝑢𝑑𝑚𝑢 +   𝜇𝑜𝑑𝑛𝑜  

 

We will call this equation 6.54. Now, if we impose conditions of constant temperature, and 

pressure, the first two terms are going to go to 0, d T is 0, d P is 0. 

 

𝑑𝐺𝑇 =   𝜈+𝜇+(𝑑𝑚 −  𝑑𝑚𝑢) +   𝜈−𝜇−(𝑑𝑚 −  𝑑𝑚𝑢) +   𝜇𝑢𝑑𝑚𝑢 +   𝜇𝑜𝑑𝑛𝑜    

 

And, if we use equation 6.52 and 6.53 to express m plus and m minus … remember, we express 

m plus in terms of the number of moles of the electrolyte added, and the number of moles of the 



un dissociated electrolyte; just the two equations before this. Let me write it and it will come back 

to you. If we do use these two expressions, equations 6.52 and 6.53 to express m plus and m 

minus, we get d G T, the first two terms have gone to 0 already, equals mu plus which is here, 

and d m plus is nothing but nu plus into (d m minus d m u) quite easy to see this. Similarly, you 

have a mu minus here, and d m minus is nu minus into d m minus d m u, plus, of course, mu u d 

m u plus mu 0 d n 0 the number of moles of the solvent. 
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And we can rearrange this as d G T … I have essentially collected all terms with a d m u together, 

mu u minus nu plus mu plus minus nu minus mu minus d m u. You know, from here there is a d 

m u here, there is a d m u here and there is a d m u here; I just have collected the coefficients of 

those, … and collated them in terms of d m u, d m, and d n 0. And so, the first term was mu u 

minus nu plus mu plus minus nu minus mu minus d m u. The second term, I have collected in 

terms of d m, nu plus mu plus plus nu minus mu minus d m, plus mu 0 d n 0;  

 

𝑑𝐺𝑇 =   (𝜇𝑢 −  𝜈+𝜇+ −  𝜈−𝜇−)𝑑𝑚𝑢 +   (𝜈+𝜇+ +  𝜈−𝜇−)𝑑𝑚 +   𝜇𝑜𝑑𝑛𝑜  

equation 6.55. 

And now, let us use the lines of the argument used to derive the condition for reaction equilibrium. 

… If you call the lines of argument, it was that we had free energy, and the free energy changes 



with the reaction coordinate or the number of moles. And therefore, if you take the partial 

derivative of that with respect to the reaction coordinate, under certain constant conditions, then 

since this the minimum at equilibrium, the slope of this curve … you know …the free energy 

versus reaction coordinate or the number of moles, the slope of that curve would be 0. We will 

use the same lines of argument here;  

 

(
𝜕𝐺𝑇

𝜕𝑛1
)

𝑇, 𝑃
= 0  

 

This is the condition for equilibrium, which is carried on from our early courses even. This also 

formalizes equation 6.7 in this module. 
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But here, the variables … you know … m is the number of moles of the electrolyte solute, which 

is dropped into n 0 moles of the solvent, and it results in m u number of moles of un-dissociated 

electrolyte; all these three are independent of each other. You could take some number of moles 

of the electrolyte solute in some number of moles of the solvent, and depending on the conditions, 

some number of moles of the un-dissociated electrolyte will remain. The rest would have 

dissociated. 

In other words, these are not dependent on each other. That is only point that I am trying to make 

here. These are independent of each other. Whereas, if you consider these three variables, m u, 



the number of moles of un dissociated electrolyte, the number of moles of positively charged 

electrolyte, the number of moles of negatively charged electrolyte, these are related by the 

equilibrium distribution. You know, at a certain point in the dissociation, it can dissociate only 

to a certain number of moles of m u plus and … a certain number of moles of the positive species, 

and certain number of moles of the negative species, that is governed by equilibrium. 

Therefore, only one of them can be considered to be independent, whereas, the other two will 

depend on that based on the equilibrium conditions. Therefore, only m u can vary while the 

equilibrium is being attained, for a given number of moles of solute m taken in a certain number 

of moles of the solvent n 0. Once we are clear about these things, it’s quite easy write the 

functionality dependences.  
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We can write the condition for equilibrium in an electrolytic solution as dou G T dou m u, you 

know … we are just taking it with respect to one independent variable, the number of moles of 

the un-dissociated electrolyte, at constant T, P, m and n 0, the number of moles of all other 

species, and the number of moles of the solvent, this is 0.  

 

(
𝜕𝐺𝑇

𝜕𝑚𝑢
)

𝑇, 𝑃, 𝑚, 𝑛𝑜
= 0  



This is the condition for equilibrium, equation 6.66. … Note if the total differential is considered 

in 6.55, d G T equals under constant conditions of temperature and pressure, was nothing but  

 

𝑑𝐺𝑇 =   (𝜇𝑢 −  𝜈+𝜇+ −  𝜈−𝜇−)𝑑𝑚𝑢 +   (𝜈+𝜇+ +  𝜈−𝜇−)𝑑𝑚 +   𝜇𝑜𝑑𝑛𝑜  

 

This if we write in terms of partial differentials, it is easy to see … this is d G T; therefore, this 

would be dou G T dou m u at constant other things, I am not going to mention the constants here, 

dou G T dou m u d m u, dou G T dou m d m, dou G T dou n 0 d n 0. Therefore, dou G T dou m 

u at constant T, P, m, n 0 is nothing but this term, mu u minus nu plus mu plus minus nu minus 

mu minus.  

 

(
𝜕𝐺𝑇

𝜕𝑚𝑢
)

𝑇, 𝑃, 𝑚, 𝑛𝑜
=  𝜇𝑢 −   𝜈+𝜇+ −  𝜈−𝜇−  

 

Let us call this equation 6.67. Now we know where we are getting at. This is equal to 0, so we 

are going to equate this to 0. 
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If we do that, we get  

 

𝜇𝑢 =  𝜈+𝜇+ +    𝜈−𝜇−  

 

In other words, the chemical potential of the un-dissociated species must equal the sum of the 

chemical potentials of the charged species weighed by its stoichiometric coefficients; equation 

6.68. Now, in equation 4.9, we saw a formulation for chemical species that is helpful, in solutions 

of biological relevance. … This was a solution … which makes it convenient, and so on, and so 

forth. 

Similarly, there is a another formulation that is used for electrolytes, where the solute 

concentrations are expressed in terms of molality … l, l instead of r … molality, which is moles 

of solute per kilo gram of solvent. It is not moles of solute per volume of the solvent, it is moles 

of solute per unit mass of the solvent. … molarity of course, you know, is moles of the solute per 

liter of the solution whereas, here it is moles of the solute per kilogram of the solvent. 
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If we use this formulation, then we get, for the solvent  

 

𝑠𝑜𝑙𝑣𝑒𝑛𝑡:         𝜇𝑜 =  𝜇𝑜
#  +   𝑅 𝑇 𝑙𝑛 𝛾𝑜𝑥𝑜       𝑎𝑛𝑑 𝛾𝑜

 
→ 1   𝑎𝑠  𝑥𝑜 

 
→ 1  

 

 

𝑠𝑜𝑙𝑢𝑡𝑒:             𝜇𝑖 =  𝜇𝑖
𝛥 +   𝑅 𝑇 𝑙𝑛 𝛾𝑖𝑚𝑖         𝑎𝑛𝑑 𝛾

𝑖
 

 
→ 1  𝑎𝑠  𝑚𝑖  

 
→ 0  

 

 

For the solute, we have mu i equals mu i triangle, if we want to call it that –  this is based on 

molality, moles of the solute by the mass of the solvent, plus R T ln gamma i m i, this is in molal 

units, moles of the solute by the mass of the solvent. The activity coefficient gamma i tends to 1 

as m i, the molality, tends to 0. Let us call this equation 6.69. 
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Therefore, the chemical potential for the solutes in an electrolytic solution, let us say it contains 

only one electrolyte to begin with, we will deal only with one electrolyte in this course. This is 

anyway an extension to you, and if it gets more complicated, you can get into a research mode, 

and find out how it is handled. It has already been done in papers and so on. This can be defined 

as …  

 

𝜇+ =  𝜇+
𝛥  +   𝑅 𝑇 𝑙𝑛 𝛾+𝑚+  

Let us call this equation 6.70. 

And, I am just writing the chemical potential for each of these species separately.  

 

𝜇− =  𝜇−
𝛥 +   𝑅 𝑇 𝑙𝑛 𝛾−𝑚−  

 

equation 6.71. And, mu u the chemical potential of the un-dissociated species, is nothing but 

 

𝜇𝑢  =  𝜇𝑢
𝛥  +   𝑅 𝑇 𝑙𝑛 𝛾𝑢𝑚𝑢  

 

Equation 6.72; where these mu triangles, the standard values, are functions of temperature and 

pressure, the same way as mu hash was. Of course,  

 



𝛾𝑖  
 

→ 1  𝑎𝑠  𝑚𝑖  

 
→ 0  

 

in all these cases … to be in line with the definition that we have given earlier. 
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Now, if we substitute equations 6.70 and 6.71 and 6.68 … what do I mean by that … 6.70 and 

6.71, and 6.68 was this.  This is the condition for ionic equilibrium,  

 

𝜇𝑢 =  𝜈+(𝜇+
𝛥 +  𝑅 𝑇 𝑙𝑛 𝛾+𝑚+) +   𝜈−(𝜇−

𝛥 +  𝑅 𝑇 𝑙𝑛 𝛾−𝑚−)  

 

I have replaced the mu plus with mu plus triangle plus R T ln gamma plus m plus, and nu minus, 

mu minus by mu minus triangle plus R T ln gamma minus m minus. 

Now, let us look at the right hand side alone, and just combine the terms … appropriately to make 

a point. nu plus mu plus, plus nu minus mu minus plus R T ln gamma plus m plus to the power 

of nu plus … you know, there is a ln here, there is a nu plus here. Therefore, this if it is taken 

inside the ln, it becomes a power. Therefore, ln of gamma plus m plus nu plus plus R T ln gamma 

minus m minus raised to the power of nu minus. 

 



𝜈+𝜇+
Δ +   𝜈− 𝜇−

𝛥  𝑅 𝑇 𝑙𝑛(𝛾+𝑚+)𝜈+
+   𝑅 𝑇  𝑙𝑛(𝛾−𝑚−)𝜈−

  

 

Just a rearrangement, which would result in nu plus mu plus triangle plus nu minus mu minus 

triangle plus … you know, there are two logarithmic terms here, added together. If you put them 

together, the addition of logs is log of the products. Therefore, plus R T gamma plus raised to the 

power of nu plus, gamma minus raised to the power nu minus, m plus raised to the power nu plus, 

m minus raised to the power nu minus,  

 

𝜇𝑢 =  𝜈+𝜇+
𝛥  +   𝜈− 𝜇−

𝛥   +   𝑅𝑇 𝑙𝑛{(𝛾+
𝜈+

𝛾−
𝜈−

)(𝑚+
𝜈+

 𝑚−
𝜈−

)}  

 

equation 6.73. 
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If the total number of positive and negative ions is nu – that’s what it means –  

 

𝜈 =  𝜈+  +    𝜈−  

 



If we define a mean ion activity coefficient as gamma plus minus, and a mean ionic molality as 

m plus minus … what do I mean by that?  You know, there are these terms here. I am just trying 

to simplify these terms. There are two terms, gamma plus to the power of nu plus, gamma minus 

to the power of nu minus. And similarly, m plus to the power of nu plus, m minus to the power 

nu minus. …I am going to replace this with some mean value, I am going to replace this with 

some other mean value; that is what I am doing here. 

So,  

𝛾±
𝜈 =   𝛾+

𝜈+
𝛾−

𝜈−
  

Therefore,  

𝛾± ≡  (𝛾+
𝜈+

𝛾−
𝜈−

)
1

𝜈  

let us call that Eq. 6.75. And, on the same lines  

 

𝑚± ≡   (𝑚+
𝜈+

 𝑚−
𝜈−

)
1

𝜈  

Eq. 6.76. 

Therefore, using the mean values, in term of the above definition … that is what it is, we can 

write the previous equation as  

𝜇𝑢 =  𝜈+𝜇+
𝛥  +   𝜈− 𝜇−

𝛥  +   𝜈 𝑅𝑇 𝑙𝑛(𝛾±𝑚±)  

– these are the mean values, that we have defined here. Let us call this equation 6.77. 
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Now, let us look at the equilibrium constant for the electrolytic reactions. It is nice to know of an 

equilibrium constant for the dissociation process, and relate it to the chemical potential. To do 

that, into the condition of equilibrium 6.77, which is the mu u equals nu plus mu plus, plus nu 

minus mu minus, if you substitute the expression for m u … you know, whatever we had written 

in terms of the other variables, we get minus R T ln of gamma plus minus raised to the power nu, 

m plus minus raised to the power nu, divided by gamma u m u, equals nu plus mu plus triangle 

plus nu minus mu minus triangle minus mu u triangle. 

Just do this exercise on your own, and see whether you get it. It is a one step process, you must 

be able to get this; 

 

− 𝑅 𝑇 ln [
(𝛾±

𝜈  𝑚±
𝜈)

(𝛾𝑢𝑚𝑢)⁄ ] =  (𝜈+𝜇+
𝛥 +  𝜈− 𝜇−

𝛥 −  𝜇𝑢
𝛥)  

 

 equation 6.78. Now, it must be clear to you. Following the same strategy as for non-ionic 

reactions, we can see what equilibrium constant is going be defined as. Now, we are trying to get 

a minus R T ln K term here. Therefore, K is defined as 

 



𝐾 ≡   [
(𝛾±

𝜈  𝑚±
𝜈)

(𝛾𝑢𝑚𝑢)⁄ ]  

 

Let us call this equation 6.79. 

Since the values of the terms inside the square brackets, which is this, or their constituents, m 

plus and m minus instead of m plus minus, are sometimes available in tables. So, there is a way 

by which you can a priori say, what the equilibrium constant of an electrolytic reaction would be. 

That is what makes this powerful. So, prediction of the equilibrium constant is possible, if these 

values are available. 
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Now, we are going take a slight detour to establish useful temperature dependencies, for 

estimating the relevant thermodynamic variables here, the equilibrium constant and so on, and so 

forth. For that, we are going to write the second part of equation 6.69. What is 6.69? Let us go 

back and show that to you. … This was the formulation for the chemical potential of the solvent 

and solute, in terms of the special way for electrolytes. Solvent remains the same whereas, solute 

was mu i equals mu i triangle plus R T ln gamma i m i, where m i is a molal units. We are going 

to look at this particular equation now. 

We can write the second part of the equation of 6.69 that we just saw, as  



 

𝜇𝑖
Δ

𝑇
=  

𝜇𝑖

𝑇
 −  𝑅 𝑙𝑛 𝛾𝑖   −   𝑅 𝑙𝑛 𝑚𝑖  

 

I just split it up as this and divided by the temperature. Therefore, these two T terms have gone. 

Now, if this equation is differentiated with respect to temperature at constant pressure, and 

composition, which means m i is constant, and therefore, the derivative with respect to 

temperature is going to be 0. 

So, … if we differentiate this with respect to temperature, then we have  

 

𝜕(
𝜇𝑖

Δ

𝑇
)

𝜕𝑇
 =  

𝜕(
𝜇𝑖
𝑇

)

𝜕𝑇
 −  𝑅 

𝜕 𝑙𝑛 𝛾𝑖

𝜕𝑇
  

 

Let us call this equation 6.80. 
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And using 5.15, which will become … now we have seen this so many times, it will come back 

to you ..  



𝜕(
𝜇𝑖

Δ

𝑇
)

𝜕𝑇
 =  −

�̅�𝑖
𝑇

𝑇2  −  𝑅 
𝜕 𝑙𝑛 𝛾𝑖

𝜕𝑇
  

 

This we had shown by an elaborate procedure, and by equation 5.15 … minus of course, the 

remaining terms are dou ln gamma i dou T; equation 6.81. 

Now, let us consider the limiting composition case, that is m i tending to 0 when gamma i tends 

to 0. According to the definition given in 6.69, under such conditions, equation 6.81 can be 

written as  

 

𝜕(
𝜇𝑖

Δ

𝑇
)

𝜕𝑇
 =  −

�̅�𝑖
∞

𝑇2   

 

m i tending to 0 – infinite dilution, �̅�𝑖
∞ in the partial molar value at infinite dilution divided by T 

squared, equation 6.82, where this is actually called, the partial molar enthalpy of component i, 

which is the electrolyte, at infinite dilution. 
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Now, if we do a similar exercise with the first part of that equation, divided by T and take the 

derivative with respect to temperature again and so on, this is the first part of the equation 6.69,  

 



𝑠𝑜𝑙𝑣𝑒𝑛𝑡:         𝜇𝑜 =  𝜇𝑜
#  +   𝑅 𝑇 𝑙𝑛 𝛾𝑜𝑥𝑜  

 

that would give us  

 

𝜕(
𝜇𝑜

#

𝑇
)

𝜕𝑇
 =  −

𝐻𝑜

𝑇2  

 

Eq. 6.83. Where H naught is the enthalpy per mole of the pure solvent. Now, if you substitute 

6.83, into this 6.81, we are trying to substitute one of these values here. 
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Let us further consider 6.83 before we even substitute that. Note that mu i triangle is not 

dependent on composition. Therefore,  

𝜕(
𝜇𝑖

Δ

𝑇
)

𝜕𝑇
  

does not vary with composition. Therefore, follow this argument a little carefully, we have done 

this argument earlier too, at the limiting value where the molality has gone to 0 and gamma is 

gone to 1, the same equation 6.83 is valid. So, it does not depend on composition. Therefore, this 

equation must be valid, even under these limiting conditions of infinite dilution. 

And therefore, under these conditions, if we substitute 6.82 in 6.81 we get  



 

𝜕 ln 𝛾𝑖

𝜕𝑇
=  

�̅�𝑖
∞− �̅�𝑖

𝑇

𝑅 𝑇2   

 

we are just substituting this into this, minus H i infinity hash by T squared onto this, and getting 

dou ln gamma i dou T, an expression for that. Dou gamma i dou T equals H i infinity hash minus 

H i T hash by R T squared. We will call this equation 6.84, and what this gives us is the 

temperature dependence of the activity coefficient. 
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If we do a similar exercise … substitute for the solvent, … the 0 case in the same equation, then 

we will get  

 

𝜕 ln 𝛾𝑜

𝜕𝑇
=  

𝐻𝑜− �̅�𝑜
𝑇

𝑅 𝑇2   

 

Therefore, by knowing the right hand side, we can get the dependence of the activity coefficient 

on temperature for an electrolytic system, equation 6.85. This is all I have for the electrolytes, 

and when we meet in the next class, we will do a review of whatever we have done in this course. 

See you then. 

 


