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Welcome back!  

In this lecture, we will begin the last module for this course. The last module is module six on 

reaction equilibria. If you recall in the last module, we had explicitly said that we will not consider 

any reactions.  We had situations like that in biological systems, plenty, and therefore we could 

use whatever we developed in that module to explain many situations. But as you all know 

reactions take place all the time.  Whether it is macro-biological system, for example, a bio-

process – there is reactions taking place.  Or even at the cell level - the cell is alive and kicking 

only because of the thousands of reactions that take place in a cell.  

Under … reasonable conditions, we could still consider this cell as a continuum, and therefore 

apply these principles of analysis to the cell also. Therefore, the reactions that take place in the 

cell can also be considered to be a valid system for the application of these principles. So, let us 

start looking at the bases to develop reaction equilibria, the conditions for the same, or the criteria 

for the same. Earlier, if you recall, in module five, we had criteria for the phase equilibria or when 

there were no reactions that we are taking place, and so on. We will develop similar criteria, when 

reactions are present. 
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To do that, we will touch up on many things that you may already be somewhat familiar with, 

because of exposure in eleventh, twelfth standards, or even in courses that you took before … 

you took this thermodynamics course. … Let us consider a bio-chemical reaction, say that occurs 

during a cell metabolism, say a reaction in glycolysis.  Let us represent that … this is a 

hypothetical equation … let us represent that by  

2 𝐴𝐴 +   𝐵𝐵 
 
→   3 𝐶𝐶  

I had just picked random numbers here, 2 A plus B giving you 3 C. Let us call that equation 6.1. 

The stoichiometry represented by the above equation can be written as  

0 = 3𝐶𝐶 −    2𝐴𝐴 −   1𝐵𝐵   

I have deliberately written it like this. 

I have taken 3 to be positive, you know the product associated coefficient to be positive, minus 2 

A minus 1 B equals 0.  Or, in general, I could write this stoichiometry as, or I could represent the 

reaction as 0 equals  

 

0 =  𝜈𝜈1𝑀𝑀1 +   𝜈𝜈2𝑀𝑀2 +   𝜈𝜈3𝑀𝑀3  

 

In a minute, I will tell you what nu s and M s are.  Let us call this equation 6.2, I wrote it in this 

form for a reason. 
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I can now make this into a compact notation,  

0 =  ∑ 𝜈𝜈𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖   

This is the reason why I had written at that way; equation 6.3, where nu i is this stoichiometric 

co-efficient which we will take as positive for the products of the reaction or the bio-chemical 

species on the right hand side of the equation.  Like this; you know, if this is the equation, the 

coefficients on the right hand side, we are going to take as positive. And the coefficients on the 

left hand side, which is that for the reactance, we are going to take as negative. 

So that works well here, 3 C was positive minus 2 A, reactant, negative, minus 1 B, reactant, 

negative.  Therefore, negative for the reactants, which are the bio-chemical species on the left 

hand side. I have already given you an answer, but why did not you take about five minutes and 

complete it? Why don’t you write down nu 1, nu 2 and nu 3 for the reaction that we just saw? Go 

ahead, take about five minutes, and write this down.  Go ahead please.  
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If you had followed the reasoning that we presented earlier, you can easily see that nu 1 was the 

coefficient of A, minus 2, nu 2, the coefficient of B, minus 1, and nu 3, the co-efficient of C 3. 

 

𝜈𝜈1 =  −2,     𝜈𝜈2 =  −1,     𝜈𝜈3 = 3  

 

And M i is the various biochemical species A, B, or C in this particular example that is considered 

in the reaction. Let me state this although we would not be looking at this in great detail, but it is 

good to state this here. If there is an inert species that is present in the system, for an inert species, 

that is present in the system, but does not react, the stoichiometric coefficient is taken as zero. 

Have this in mind.  Whenever it becomes necessary to use this, please use this, and that will make 

things a lot more general. 
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Now, let us go back to what we already know. We know that the changes in the number of moles 

of each species in a reaction are directly proportional to the corresponding stoichiometric 

coefficients. What do I mean by that?  

For example, in the above reaction given by equation 6.1, which is 2 A plus 3 B equals 3 C, if we 

divide this equation two throughout by 2, we get A plus half B equals three by two C.  Or, if 1 

mole of A disappears, half a mole of B will also disappear to result in three by two or 1.5 moles 

of C. Therefore, the changes in the number of moles of each species are directly proportional to 

the corresponding stoichiometric coefficients.  
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This particular aspect can be represented as  

Δ𝑛𝑛1
𝜈𝜈1

=  𝛥𝛥𝑛𝑛2
𝜈𝜈2

 =  𝛥𝛥𝑛𝑛3
𝜈𝜈3

 =  ⋯  𝛥𝛥𝑛𝑛𝑖𝑖
𝜈𝜈𝑖𝑖

 =  ⋯ =  𝛥𝛥𝛥𝛥  

the change in number of moles of 1 is delta n 1. We will call this equation 6.4. 

delta epsilon is the extent of a reaction.  It is also called the reaction coordinate, if you recall this 

term from your earlier courses.  Delta epsilon- the reaction coordinate, or epsilon is the reaction 

coordinate.  

For a differential change in the number of moles, we can replace these big differences by the 

differential change. And therefore, we can write  

d𝑛𝑛1
𝜈𝜈1

 =  𝑑𝑑𝑛𝑛2
𝜈𝜈2

 =  𝑑𝑑𝑛𝑛3
𝜈𝜈3

 =  ⋯  𝑑𝑑𝑛𝑛𝑖𝑖
𝜈𝜈𝑖𝑖

 =  ⋯ =  𝑑𝑑𝛥𝛥  

We will call this equation 6.5.  …What I would like you to do is now, take some time, I will tell 

you how much time.  Look at glycolysis, the various reactions in glycolysis, which is one of the 

central pathways in the cell,  

Remember … glucose goes to glucose six phosphate.  Glucose from outside the cell gets inside 

the cell first and then it will goes to glucose six phosphate, fructose six phosphate and so on, all 

the way down to pyruvate.  Choose that pathway, which is called glycolysis. Each one of those 

steps as you know is catalyzed by an enzyme. Take those individual reactions and write 

equivalent expressions for, let us say, five of those reactions. I am going to give you about twenty 

minutes to do that. Take about twenty minutes; go back to your biochemistry text book, 

biochemistry notes. Choose five reactions that take place in glycolysis and write this down, for 

improving the comfort level in using this particular equation.  Go ahead please.  
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Now, hopefully, you would have gotten back the level of comfort that you had in your earlier 

classes while dealing with stoichiometric coefficients, by writing down the relationships between 

the stoichiometric coefficients for at least five reactions in glycolysis. The choice of the reactions 

were yours. Of course, they were reversible reactions but that does not matter.  
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Now, let us look at the condition for bio-reaction equilibrium. Let us consider a system in which 

the only reaction taking place is equation 6.1, which is two A plus B giving you three C; that was 



the reaction given by 6.1. The Gibbs free energy of the reacting system is GT as we had seen 

earlier.  That can be written as  

𝐺𝐺𝑇𝑇 =  𝑛𝑛1𝜇𝜇1  +   𝑛𝑛2𝜇𝜇2  +   𝑛𝑛3𝜇𝜇3  

Let us call this equation 6.6. 

Now, we know from either chemistry courses, the thermodynamic aspects of chemistry courses, 

or some specific courses that you would have take earlier that the equilibrium condition 

corresponds to a minimum in the Gibbs free energy. I am just going to take this directly from 

whatever we know earlier that a minimum in Gibbs free energy occurs at equilibrium. Since, the 

composition or the number of moles of each species varies as the reaction proceeds, we can think 

of a certain composition at which the Gibbs free energy is a minimum. 

 You know the reaction is going to take place, when the reaction takes place, with time, the 

number of moles of each species is going to change.  We already know from earlier that 

equilibrium occurs when the Gibbs free energy is a minimum. In other words, there must be some 

combination of moles of these species involved in the reaction at which the Gibbs free energy 

turns out to be a minimum. That is the whole basis of the argument here. 
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This means that if GT, the total free energy, is plotted as a function of let us say n1, the number 

of moles of species 1 – that is the only thing that we can represent on one co-ordinate. That is 

only reason for taking n 1. At constant temperature and pressure, a minimum in G T occurs at 

some value of n 1, and that corresponds to the equilibrium condition. If we write it 

mathematically, at equilibrium,  

�𝜕𝜕𝐺𝐺
𝑇𝑇

𝜕𝜕𝑛𝑛1
�
𝑇𝑇, 𝑃𝑃

= 0  

This is just a mathematical statement of the fact that we knew from earlier classes that the free 

energy, Gibbs free energy, of a system is minimum at equilibrium.  

Therefore, the slope of the GT versus n1 curve goes to zero at that particular point. You know it 

is a minimum and therefore, this slope goes zero.   Let us call this equation 6 7. 
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Further, we know from equation 2.15 that  

 

𝑑𝑑𝐺𝐺𝑇𝑇 =  − 𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +   𝑉𝑉𝑇𝑇 𝑑𝑑𝑑𝑑 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

you recall this equation?  This equation we have used many times.   If we write equation 2.15 for 

our current system of interest, which is the system that consists of that only reaction taking place, 

we can write  



𝑑𝑑𝐺𝐺𝑇𝑇 =  − 𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +  𝑉𝑉
𝑇𝑇

 𝑑𝑑𝑑𝑑 +   𝜇𝜇1𝑑𝑑𝑛𝑛1 +   𝜇𝜇2𝑑𝑑𝑛𝑛2  +  𝜇𝜇3𝑑𝑑𝑛𝑛3  

 

Let us call this equation 6 8. 
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Now, if we apply 6.5, equation 6.5, which is  

d𝑛𝑛1
𝜈𝜈1

 =  𝑑𝑑𝑛𝑛2
𝜈𝜈2

 =  𝑑𝑑𝑛𝑛3
𝜈𝜈3

 =  ⋯  𝑑𝑑𝑛𝑛𝑖𝑖
𝜈𝜈𝑖𝑖

 =  ⋯ =  𝑑𝑑𝛥𝛥  

In our current system , we get  

d𝑛𝑛1
−2

 =  𝑑𝑑𝑛𝑛2
−1

 =  𝑑𝑑𝑛𝑛3
3

  

Since it is a reactant, this becomes minus one. Similarly, here also 2 was a stoichiometric co-

efficient of A, and since it is a reactant, by our convention, this becomes minus 2; equals d n 3 

by this stoichiometric coefficient of the product C, and since it is a product we have a positive 

terminology here, plus 3. So, dn1 by minus 2 equals dn2 by minus 1 equals dn3 by 3.Let us call 

this equation 6.9.   

Therefore,  



𝑑𝑑𝐺𝐺𝑇𝑇 =  − 𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +  𝑉𝑉
𝑇𝑇

 𝑑𝑑𝑑𝑑 + �𝜇𝜇1 +  𝜇𝜇2 �
−1
−2
� +  𝜇𝜇3 �

3
−2
�� 𝑑𝑑𝑛𝑛1  

Let us call this equation 6 10. 
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And at constant temperature and pressure, GT can be zero. It can be zero, only if the last term is 

zero, because at constant temperature and pressure as dT is zero, dP is zero anyway at constant 

temperature and pressure. Therefore dGT can be zero, only if this term goes to zero. Therefore, 

 

𝜇𝜇1  +  1
2
𝜇𝜇2  =  3

2
𝜇𝜇3  

  

0 =  3𝜇𝜇3  −  2𝜇𝜇1  −   𝜇𝜇2  

 

We will call this equation 6.11, which can be compared, term by term with the bio-reactions 

stoichiometry as  

 

0 = 3𝐶𝐶 − 2𝐴𝐴 −  1𝐵𝐵  

 

except that, this species are replaced by their chemical potentials. Can you see this here? 3 C 

minus 2 A minus 1 B, whereas here for the condition of equilibrium, we got 3 mu 3 minus 2 mu 

1 minus mu 2.  
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Therefore, in general, if there are k species in a bio reaction written as  

 

0 =    ∑ 𝜈𝜈𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖   

 

Then,  

 

𝑑𝑑𝐺𝐺𝑇𝑇 =  − 𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +  𝑉𝑉
𝑇𝑇

 𝑑𝑑𝑑𝑑 +   𝜇𝜇1𝑑𝑑𝑛𝑛1 +   𝜇𝜇2𝑑𝑑𝑛𝑛2  + ⋯+  𝜇𝜇𝑘𝑘𝑑𝑑𝑛𝑛𝑘𝑘  

 

We can write this in terms of e reaction coordinate and the stoichiometric coefficients from 

equation 6.5, we get  

 

𝑑𝑑𝐺𝐺𝑇𝑇 =  − 𝑆𝑆𝑇𝑇 𝑑𝑑𝑇𝑇 +  𝑉𝑉
𝑇𝑇

 𝑑𝑑𝑑𝑑 +   �𝜇𝜇1𝜈𝜈1 +  𝜇𝜇2𝜈𝜈2 + ⋯+  𝜇𝜇𝑘𝑘𝜈𝜈𝑘𝑘�𝑑𝑑𝛥𝛥  

 

I hope you are able to see this please go back to Equation 6.5 if you are unable to see this. This 

will drop out from there. You know the relationship between the various d ns and d Epsilons will 

drop out from there and from that we will get this expression. We will call this equation 6.12. 
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Therefore, at constant temperature and pressure, we can write  

 

�𝜕𝜕𝐺𝐺
𝜕𝜕𝜕𝜕
�
𝑇𝑇, 𝑃𝑃

=  ∑ 𝜈𝜈𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖   

 

That is equation 6.13.  We know that GT minimum occurs at equilibrium and for a minima to 

occur the … derivative given here must be equal to zero. And therefore, the condition for 

equilibrium is  

 

∑ 𝜈𝜈𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 = 0  

 

equation 6.14. This happens to be the most fundamental equation to represent chemical 

equilibrium, or equilibrium of a system in which chemical reactions take place. So, please 

remember this. I think we are almost out of time. 
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Therefore, when we come back, in the next class or let me see whether we can go further a little 

bit. If there are R independent reactions that occur in a system, for each of those independent 

reactions, there will be an equation of the form 6.14. ∑ 𝜈𝜈𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 = 0 Thus, R such reactions will 

define that system at equilibrium. Therefore, we will have, for a multi-reaction system, also the 

condition for equilibrium remains the same. But, we will have R such equations that specify the 

equilibrium. We will stop here and when we start the next class, we will continue with other 

aspects of reaction equilibrium. 


