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Welcome back! 

In this lecture, let us review whatever we did in module 5 under phase equilibrium. As you know, 

there could be various phases - the three major phases that we are looking at in this particular 

course are the solid, liquid, and the vapour phase. 
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… If they exist in equilibrium or any two phases existing in equilibrium or all three phases exiting 

in equilibrium with each other – how do we handle such situations, is what we are going to look 

at … or what is the formalism for handling such situations is what we are going to look at in this 

course. 

We had initially seen the P T diagram, the pressure versus temperature diagram for a pure 

substance to set the base for the kind of systems that we will be interested in.   We said that in 

this region, you know region essentially means the combinations of temperature pressure, T 

comma P, is each point here; the combinations of temperature and pressure in which the solid 



would exist, in which the liquid would exist here, and here the vapour exist. This is the 

sublimation curve across which the solid to vapour transition takes place, which means along 

these combinations of temperature and pressure, you have solid co existing with vapour. 

This is the vaporization curve, which is easier to imagine.  We have the liquid co exiting with the 

vapour across this line or across the pressures and temperature conditions that are given by this 

line.  This is the fusion curve across which or on which you have coexistence of both the solid 

phase, and the liquid phase. We also said that beyond or above the critical pressure critical 

pressure – critical temperature critical pressure point is this.  Above the critical temperature here, 

and above the critical pressure we have the supercritical phase which we are not going to consider 

in this particular course. 
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The same information can also be obtained in a P versus V diagram, the pressure verses specific 

volume diagram.  This is again for a pure substance.  We saw that the lines in the previous graph 

get represented somewhat as regions in this particular graph. Here we have the solid phase in 

these combinations of specific volumes, and pressure; in these combinations of specific volume 

and pressure, you have the liquid phase, and in these combinations of specific volume and 

pressure we have the vapour phase.  This is the critical point here, Vc, Pc. In this region we have 

the coexistence of both the solid, and liquid phase; in this region we have the coexistence of solid 

and vapour phase, and underneath this dome in this region we have the coexistence of liquid and 

vapour phases. 



So, these are the kind of systems that we are looking at we have the coexistence of 2 or more 

phases together at the same time. Initially we looked at the pure substance and then extended it 

to a multi component system . 
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The take home message from this particular module is this exact slide – the conditions that 

thermodynamics provides with … as criteria for different phases to exist in equilibrium. As we 

had seen … before we look at the conditions, we need to understand that it is a dynamic 

equilibrium, which means that there are changes occurring at the micro scale.  Those changes 

occurring at the micro scale balance each other, so that there is no change at the macro scale. We 

had given the example of a substance going from the liquid phase to a vapour phase. 

For example, water, just pure water, going from the liquid phase, H2O that we know of, to the 

vapour phase; we said that there is a rate at which the water molecules move from the liquid 

phase to the vapour phase, and at the same time there is a rate at which the water molecules move 

from the vapour phase to the liquid phase. If the rate in one direction equals the rate in the other 

direction that is the condition of equilibrium that we are looking at.  What we mean by dynamic 

equilibrium is that these are taking place at all the time – it is just that the rates balance, so that 

we are not able to see any changes at the macro scale. 

We said that we are going to indicate phases by alpha, beta, gamma, and so on.  There could be 

multiple phases of the same kind such as 2 distinct liquid phases, and things like that. … Also the 

components we are going … to indicate by 1, 2, 3, and so on. 
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Now, we come to the criteria for thermodynamic equilibrium.  If a system is said to be in 

thermodynamic equilibrium, it needs to satisfy simultaneously the following equations. That is,  

𝑇𝑇𝛼𝛼  =  𝑇𝑇𝛽𝛽  =  𝑇𝑇𝛾𝛾  = ⋯  

Therefore, the temperatures in all the phases must be equal equation 5.1.  This is the condition 

for thermal equilibrium.   

𝑃𝑃𝛼𝛼  =  𝑃𝑃𝛽𝛽  =  𝑃𝑃𝛾𝛾  = ⋯  

The equality of pressures across the various phases, equation 5.2, is the condition for mechanical 

equilibrium. This is thermal equilibrium, mechanical equilibrium, and the condition for the 

chemical equilibrium is given by all these equations that follow. Which is the chemical potential 

of any component in any phase must be equal.  Or, in other words, chemical potential of a certain 

component i, in all the phases must be equal. 

In other words, 

𝜇𝜇1,𝛼𝛼 =  𝜇𝜇1,𝛽𝛽  =  𝜇𝜇1,𝛾𝛾 = ⋯  

We call this equation 5.3.  

 



𝜇𝜇2,𝛼𝛼 =  𝜇𝜇2,𝛽𝛽  =  𝜇𝜇2,𝛾𝛾 = ⋯  

The chemical potential of component 2 in the various phases alpha, beta and gamma – they must 

all be equal; equation 5.4.  We wrote one more equation, and then we said we need to write as 

many equation as there are components. 

For the third component,  

𝜇𝜇3,𝛼𝛼 =  𝜇𝜇3,𝛽𝛽  =  𝜇𝜇3,𝛾𝛾 = ⋯  

This was equation 5.5, and we could write as many equations as there are components. So, all 

these put together are the conditions that need to be simultaneously satisfied for chemical 

equilibrium.  Thermal equilibrium, mechanical equilibrium, chemical equilibrium – all three put 

together is thermodynamic equilibrium.  
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Then we derived what is called the phase rule for non reacting system.  There are no reactions in 

the system that we going to consider, and for such systems this phase rule will be valid. 
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And the bases for this was something like this: if the system contains pi phases, solid, liquid, 

vapour, and so on.  Or it could be liquid 1, liquid 2 and so on and so forth.  If the number of … 

or for simplicity, let us say solid, liquid, vapour phases, and the number of components in each 

phase is C.  Then we said that the number of variables needed to specify the state of the system 

is π(𝐶𝐶 + 1).  This is the number of variables. 
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And we saw that the number of equations between the variables by the arguments … we can go 

back and see the arguments again … is (𝜋𝜋 − 1)(𝐶𝐶 + 2). Therefore, the … number of equations 



between the variables is (𝜋𝜋 − 1)(𝐶𝐶 + 2).  And, the number of variables was π(𝐶𝐶 + 1).  We know 

that for a set of mathematical equations, if there are certain variables and certain equations, the 

number of variables is typically equal to or more than the number of independent equations 

between them for a meaningful solution to arise. If it is equal, fine, we have a unique set of 

solution.  If it is not equal, probably we need to supply some information, so that the number of 

variables becomes equal to the number of equations, and then we can get a unique solution. This 

was the basis for the phase rule, as follows.  
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This is the number of variables, π(𝐶𝐶 + 1), must be greater than the number of equations, (𝜋𝜋 −

1)(𝐶𝐶 + 2).  In other words, if you multiply, and then group these appropriately and transpose this, 

we saw that (𝐶𝐶 −  π + 2)  ≥   0.  If it is equal to 0 we get a unique solution set, if it is greater than 

0 then we need to supply that many variables, or we need to specify that many variables for a 

unique solution to arise. 
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… The number of variables that we needed to supply is what we designated as the number of 

degrees of freedom, or F; 𝐹𝐹 =  (𝐶𝐶 −  π + 2).  This is called the phase rule.  The number of 

separate variables that need to be specified to completely describe or completely specify this 

system or any given system is called the number of degrees of freedom of that particular system.  

Typically, the variables that we choose are pressure, temperature, and the specific volume in that 

order of importance; or temperature, pressure, specific volume. 

This is worth repeating.  Application of the phase rule tells us that the number of in tells us the 

number of independent variables that are required to completely specify the state of a system, if 

the number of phases and components are known: π phases and C components, 𝐹𝐹 =

 (𝐶𝐶 −  π + 2).  Again, this is valid when there are no reactions that take place in the system.  Then 

we worked out an example to calculate the degrees of freedom in a couple of systems. 
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Then, we looked at the so-called, Clausius-Clayperon equation. To remind you, the Clausius-

Clapeyron equation is valid for any two phases in equilibrium. It could be a solid-liquid phase, a 

liquid-vapour phase, solid-vapour phase and so on. 
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… the vapour solid; the solid liquid and the solid vapour phase – there should be 2 distinct phases 

actually. 
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We went about deriving the Clausius-Clapeyron equation by using the condition that those 2 

phases are in equilibrium; and therefore, the chemical potentials have to be equal – that is where 

we started.  Then, we expressed the differentials of the chemical potential or equated the 

differentials of the chemical potential, and we expressed them as functions of temperature and 

pressure, because they are easily measurable. 
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Then we took a detour to essentially get expressions that are useful for the temperature derivative 

of the chemical potential, and the pressure derivative of the chemical potential at constant 

pressure, and temperature, respectively. 

We also got one more equation that was useful. This is the way we went about doing at.   We 

started with the equation 2. 15, we applied the reciprocity relationship between 2 of these things 

taken together.  I think we took these two first, and then these two to get  

�𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜕𝜕
�
𝑇𝑇,  𝑛𝑛𝑖𝑖

=  �𝜕𝜕𝑉𝑉
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,  𝜕𝜕,  𝑛𝑛𝑗𝑗

=  𝑉𝑉�𝑖𝑖𝑇𝑇  

�𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑇𝑇
�
𝜕𝜕,  𝑛𝑛𝑖𝑖

=  −�𝜕𝜕𝑆𝑆
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,  𝜕𝜕,  𝑛𝑛𝑗𝑗

=  − 𝑆𝑆�̅�𝑖𝑇𝑇  
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We got this, and then it is quite interesting when we went about the derivation.  This was the 

additional equation that we got.   

�
𝜕𝜕�𝜇𝜇𝑖𝑖 𝑇𝑇� �

𝜕𝜕𝑇𝑇
�
𝜕𝜕,  𝑛𝑛𝑖𝑖 

=  − 𝐻𝐻�𝑖𝑖
𝑇𝑇

𝑇𝑇2
  

This we will use later that is what we said. 
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And those were equations that are valid for multi components systems, and since we are looking 

initially at pure components while deriving the Clausius-Clayperon equation, we wrote 

equivalent expressions for the pure components.   

�𝜕𝜕𝜇𝜇
𝜕𝜕𝜕𝜕
�
𝑇𝑇

= 𝑉𝑉  

�𝜕𝜕𝜇𝜇
𝜕𝜕𝑇𝑇
�
𝜕𝜕

=  −𝑆𝑆  

�𝜕𝜕�
𝜇𝜇
𝑇𝑇� �

𝜕𝜕𝑇𝑇
�
𝜕𝜕

=  −  𝐻𝐻
𝑇𝑇2

  

Using these, we substituted into the equality of the chemical potential differential expression. 
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… which is 5.10 … which is given here; 

�𝜕𝜕𝜇𝜇𝛼𝛼
𝜕𝜕𝑇𝑇
�
𝜕𝜕
𝑑𝑑𝑇𝑇 +  �𝜕𝜕𝜇𝜇𝛼𝛼

𝜕𝜕𝑃𝑃
�
𝑇𝑇
𝑑𝑑𝑃𝑃 = �

𝜕𝜕𝜇𝜇𝛽𝛽
𝜕𝜕𝑇𝑇
�
𝑃𝑃
𝑑𝑑𝑇𝑇 + �

𝜕𝜕𝜇𝜇𝛽𝛽
𝜕𝜕𝑃𝑃
�
𝑇𝑇
𝑑𝑑𝑃𝑃  

 Then we substituted these, we could write this in terms of molar entropies, and molar volumes. 
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Just by rearranging that we could get  



𝑑𝑑𝜕𝜕
𝑑𝑑𝑇𝑇

 =  
𝑆𝑆𝛼𝛼− 𝑆𝑆𝛽𝛽
𝑉𝑉𝛼𝛼− 𝑉𝑉𝛽𝛽

  

the difference in entropies divided by the difference in specific volumes.  Then, we had utilized 

the condition or the special case that the transition between the 2 phases, between the liquid and 

vapour phase – that process can be considered to be a reversible process. Therefore, we could 

apply the second law statement for writing entropies in terms of the heat interaction, Q reversible 

by T.  Since the only heat interaction is going towards the change of phase we could replace that 

with the change in enthalpy between the 2 phases, and which is nothing but the latent heat of the 

phase transition. In this case latent heat of the phase transition between alpha to beta given as L 

– L by T. 
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Therefore, we could write  

𝑑𝑑𝜕𝜕
𝑑𝑑𝑇𝑇

=  𝐿𝐿
𝑇𝑇 ∆𝑉𝑉

  

This was the Clausius-Clayperon equation where delta V, the volume change in the phase change, 

is V alpha minus V beta. And then as mentioned earlier, Clausius-Clayperon equation is valid for 

phase changes, for any phase change not necessarily liquid to vapour.  It is also valid for liquid 

to vapour phase change, and it can be interpreted as the change in pressure per unit change in 

temperature; that is needed to maintain phase equilibrium.  
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Then we brought in this approximation; that for vapour liquid equilibria, or vapour solid 

equilibria, the difference between the vapour volume, and the liquid or the solid volume or rather, 

I should say that the liquid volume or the solid volume is negligible compared to the vapour 

volume.  Therefore, the difference between those specific volumes is nothing but … that equal 

to the vapour volume itself. Therefore, delta V is approximately equal to … the vapour volume 

or V gas.  If we use an ideal gas relationship, we can write that as equal to R T by P.  If we do 

that, we get  

𝑑𝑑 ln 𝜕𝜕
𝑑𝑑𝑇𝑇

≅  𝐿𝐿
𝑅𝑅 𝑇𝑇2

  

which is a good approximation to use for the Clausius-Clayperon equation as long as the vapour 

pressure, P, is not large; this is what we had said. 
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Then, we worked out a problem involving iso-propanol, our popular substance, which is going 

from the vapour phase to the liquid phase.  The solution was detailed.  … It was quite simple; we 

had to find 𝑑𝑑𝜕𝜕
𝑑𝑑𝑇𝑇

, and we said that we could find that by using … the values of these variables – L 

and T, where given in the problem itself, and delta V was the one that we needed to find out.  

Turned out to be a little lengthy, because it involved an iterative solution for both the volumes.  I 

had shown you how to set up an iteration in a standard spreadsheet, and go about getting the 

value.  It was very simple way of doing that.  Once you set it up, it’s simple.  It just takes time to 

describe it, but the process itself, if you do it yourself, is quite fast. 
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We saw that we had used different formulations of the Redlich Kwong equation to get estimates 

of first, the vapour volume, by starting with the ideal gas volume as the initial guess. Then, a 

different formulation for the liquid volume, in which we started with the value of b as the initial 

guess; the volume of molecules as the initial guess for liquid volumes.  
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Then, we started looking at the various equilibria or the specific governing equations for various 

equilibria.  We had looked at vapour liquid equilibrium in some detail. 



(Refer Slide Time: 21:33) 

 

The basis is quite simple: the temperatures, and pressures have to be equal, and the chemical 

potentials have to be equal.  We said we are going to take these as given – that is thermal 

equilibrium and mechanical equilibrium as given. We will typically concentrate on the chemical 

equilibrium part is what we said.  𝜇𝜇𝑣𝑣 =  𝜇𝜇𝑙𝑙 is what arises as a part of writing the chemical 

equilibrium in the liquid vapour equilibrium case. 
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Then, we had if it is a pure substance, we said we could write  



 

𝜇𝜇𝑣𝑣 as 𝜇𝜇0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑣𝑣, and 𝜇𝜇𝑙𝑙 can be written as 𝜇𝜇0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑙𝑙.  So, cancelling the terms, we 

could get the fugacity of the pure component in the vapour phase, must equal the fugacity of the 

pure component in the liquid phase. And, we said that must say, equal f sat because saturated 

conditions exist when there is a liquid to vapour or a vapour to liquid transition. 

𝑓𝑓𝑣𝑣 =  𝑓𝑓𝑙𝑙  = 𝑠𝑠𝑠𝑠𝑠𝑠,  𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠  
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… Using the fugacity coefficient, and the fact that the pressure would turn out to be the saturated 

pressure, we could write the fugacity coefficient of the pure component,  

𝑓𝑓
𝜕𝜕

 ≡  ∅  

𝑃𝑃𝑣𝑣 =  𝑃𝑃𝑙𝑙 =   𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠  

𝜙𝜙𝑣𝑣𝑃𝑃𝑣𝑣 =  𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠  
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… This was for a pure component, 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠. For a multi component system, we used 

the equality of the chemical potentials of the component in the 2 phases, and we could write  

 𝑓𝑓𝑖𝑖𝑣𝑣 =  𝑓𝑓𝑖𝑖𝑙𝑙 

Then, using the detailed expressions of the chemical potentials,  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑠𝑠𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑠𝑠𝑖𝑖  

This is for the vapour phase, and this is for the liquid phase,  

𝜇𝜇𝑖𝑖  =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  

f i is the pure component fugacity. If we equate the two, then we could write  

∅𝑖𝑖𝑃𝑃𝑠𝑠𝑖𝑖 =  𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  

This is the condition for equilibrium in the vapour liquid equilibrium case.  This was equation 

5.30. 
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Then we worked out a problem which involved KLa, the volumetric mass transfer coefficient. 
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The solution was quite simple – that is the chemical potential of oxygen in the vapour phase must 

equal the chemical potential of oxygen in the liquid phase under the conditions in the problem, 

which that of equilibrium. 
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Then we looked at using the vapour liquid equilibrium case, and estimating the fugacity 

coefficient from the P-V-T data at equilibrium, which is the vapour liquid equilibrium. 
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This was essentially a different method of getting the fugacity coefficient. We had derived this 

by starting out with some expressions in module 3.  We got  

𝑅𝑅 𝑇𝑇 𝑑𝑑 ln 𝑓𝑓 = 𝑉𝑉 𝑑𝑑𝑃𝑃  
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We had integrated that expression, and we had identified that the molar liquid volume V is a 

weak function of  pressure at temperatures below the critical temperature. Therefore, this V, 

molar volume, can be considered a constant in this integration.  It comes out, and that is a very 

good approximation.  If it comes out, then we could write  

ln 𝑓𝑓
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

 =  1
𝑅𝑅 𝑇𝑇 ∫ 𝑉𝑉 𝑑𝑑𝑃𝑃𝜕𝜕1

𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠   

Then the integral will be the definite integral between P sat and P 1 – we are going to drop 1 – 

becomes  

ln 𝑓𝑓
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

=  𝑉𝑉
𝑙𝑙 (𝜕𝜕 − 𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠)

𝑅𝑅 𝑇𝑇
  

 



(Refer Slide Time: 26:15) 

 

Or, f by f sat equals what we call the Poynting factor,  

𝑓𝑓
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

 = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑉𝑉
𝑙𝑙 (𝜕𝜕 − 𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠)

𝑅𝑅 𝑇𝑇
�  

Then we had invoked equation 5.28,  

𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠  

in the case of vapour liquid equilibrium. 
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And, we could write, by expressing one in terms of the other, and recognizing that phi is nothing 

but f by P, 
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We could write  

∅𝑖𝑖𝑃𝑃𝑠𝑠𝑖𝑖  =  𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  



This is the condition for a equilibrium in a multi components systems. This was for the pure 

component; we could write fugacity as  

∅𝑖𝑖𝑃𝑃𝑠𝑠𝑖𝑖  =  𝛾𝛾𝑖𝑖 �𝜙𝜙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑉𝑉𝑖𝑖
𝑙𝑙 (𝜕𝜕 − 𝜕𝜕𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠)
𝑅𝑅 𝑇𝑇

�� 𝑥𝑥𝑖𝑖  

This is the Poynting factor. Then, for a multi component system, this is valid, is what we saw 

earlier in equation 5.30. When we used this expression for fi that we had developed –  

∅𝑖𝑖𝑃𝑃𝑠𝑠𝑖𝑖  =  𝛾𝛾𝑖𝑖 �𝜙𝜙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑉𝑉𝑖𝑖
𝑙𝑙 (𝜕𝜕 − 𝜕𝜕𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠)
𝑅𝑅 𝑇𝑇

�� 𝑥𝑥𝑖𝑖  
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 Φ𝑖𝑖    𝑃𝑃𝑠𝑠𝑖𝑖  =  𝛾𝛾𝑖𝑖𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑖𝑖  

This is the useful equation in this particular case for estimating the activity coefficient, where fi 

i, we had said, was nothing but  

Φ𝑖𝑖  =  ∅𝑖𝑖
𝜙𝜙𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑥𝑥𝑒𝑒 �− 𝑉𝑉𝑖𝑖

𝑙𝑙 (𝜕𝜕 − 𝜕𝜕𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠)

𝑅𝑅 𝑇𝑇
�  

We also recognized that for most biological systems at pressures that are normal, this term pretty 

much becomes 1.  Therefore,  



Φ𝑖𝑖  =  ∅𝑖𝑖
𝜙𝜙𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠  

Therefore, you could substitute it back under this to get gamma i from VLE data; VLE is vapour 

liquid equilibrium data. 
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We also saw that phi can be estimated from the second virial coefficients. We did not derive this. 

I said that I am just going to give you expressions, so that you … could use this if these values 

become available in terms of tables, and so on.  
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Then, we went about deriving the governing equations for solid-liquid, liquid-liquid and solid-

liquid equilibria.  In fact, you derived this and we just checked it. … The basal equations that we 

used were the conditions of thermal equilibrium, mechanical equilibrium and chemical 

equilibrium, predominantly chemical equilibrium. 
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We had seen where this becomes relevant; in the case of liquid-liquid equilibrium, we said that 

you could have two different liquid phases – one being hydrophobic, the other one being 

hydrophilic, or both could be hydrophilic. The hydrophobic-hydrophilic pair is used in say, 

antibiotic extraction.  The hydrophilic-hydrophilic pair – two distinct hydrophilic phases – is used 

in the extraction of proteins to maintain their activity by maintaining their conformation. … If l 

1 and l 2 are the 2 liquid phases in equilibrium, and for each component we could write the 

equality of chemical potentials. 
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… From this expansion comes the equality of the fugacities of the component i between these 

two phases.  Utilising equation 4.8 in module 4, you could write the fugacity in terms of pure 

component fugacity;  

𝛾𝛾𝑖𝑖𝑙𝑙1𝑓𝑓𝑖𝑖𝑙𝑙1𝑥𝑥𝑖𝑖𝑙𝑙1  =   𝛾𝛾𝑖𝑖𝑙𝑙2𝑓𝑓𝑖𝑖𝑙𝑙2𝑥𝑥𝑖𝑖𝑙𝑙2  

This is the governing equation for liquid-liquid equilibrium. We had also worked out a problem 

after this, an example that of ampicillin extraction. 
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And the ratio of the activity coefficients in those two phases.  Then, we looked at solid liquid 

equilibrium in some sort of hurry.  We said that you could have a solid phase and a liquid phase, 

and let us say a component distributing between the solid phase and liquid phase in equilibrium. 

I had given some examples such as biosorption.  For example, when there are toxic trace metals 

that are present in say an effluent, one of the ways by which they can be removed effectively is 

by contacting the liquid phase with the metal –  you contact this liquid phase with the metal, with 

another solid phase into which the metal can partition. 

Therefore, there is a huge reduction in the volume that contains the metal, and therefore better 

processing capabilities later. The solid phase could be let us say dried self cells; dried cells from 

even brewing industries could be used as the material which can be utilized to remove the toxic 

trace metals such as chromium, copper, cadmium; chromium as you all know is quite toxic – 

chromium’s VI is very toxic, and so on. So this can be used to remove all such things.  

Bioleaching is a similar phenomenon, where there is contact between a solid and a liquid phase 

and there is a distribution of a metal say, between these 2 phases. … Even in some analytical 

steps you come across situations where a solid is contacted with a liquid, and there is distribution 

of a certain component or some components.  In such cases, we could utilize the same arguments 

for equilibrium – equations 5.1 to 5.5, and so on, need to be valid in any case.  They are basal 

conditions of equilibrium.   

Even if we concentrate from 5.3 onwards – we are going to take thermal and mechanical 

equilibrium as given – the chemical equilibrium, the equality of chemical potentials of each 

component across the phases … of a certain component across phases.  … If we use that then, 

we come across the condition that the chemical potential of the component i in the solid phase 

must equal the chemical potential of the same component in the liquid phase. This could be for 

example, chromium or cadmium that is distributing between the waste water, and the bio sorbent 

that is used to remove this particular metal. So mu i in the solid phase equals mu i in the liquid 

phase. 
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And if we take that into account, and expand it in terms of the fugacities, the terms will cancel, 

and what we are left with is the fugacity of the component i in the solid phase, equals the fugacity 

of the component in the liquid phase.  

𝑓𝑓𝑖𝑖𝑠𝑠 =  𝑓𝑓𝑖𝑖𝑙𝑙  

In terms of the activity coefficients, we can write for the solid phase, gamma i s, the activity of 

the component i in the solid phase, the pure component fugacity in the solid phase, times the mole 

fraction in the solid phase, z i, equals the activity coefficient in the liquid phase, times … the pure 

component fugacity, times the mole fraction in the liquid phase.  

𝛾𝛾𝑖𝑖𝑠𝑠𝑓𝑓𝑖𝑖𝑠𝑠𝑧𝑧𝑖𝑖 =   𝛾𝛾𝑖𝑖𝑙𝑙𝑓𝑓𝑖𝑖𝑙𝑙𝑥𝑥𝑖𝑖   

This becomes the governing equation for equilibrium in the solid-liquid case.  z i and x i are mole 

fractions of component i in the solid and liquid phases, respectively. So, we had essentially seen 

the conditions of equilibrium - chemical equilibrium particularly, and then phase rule, and then 

we had taken up specific cases of vapour-liquid equilibrium, VLE, liquid-liquid equilibrium, 

LLE, and solid-liquid equilibrium, SLE.  We had also shown one of the ways of estimating the 

activity coefficient from the conditions of vapour-liquid equilibrium.  That is essentially what we 

did in module 5, and when we come to the next class, we will start out the last module of this 

particular course, module 6 on reaction equilibrium. See you then. 



 


