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Welcome! to this lecture.  

In the last lecture, we saw the different criteria for thermodynamic equilibrium across various 

phases. That is what is given here; this is what saw in the last class. This is the fundamental 

requirement for thermodynamic equilibrium. If alpha, beta, gamma are various phases in 

equilibrium, the temperature across the phases or in each of the phases must be equal. In other 

words, T alpha equals T beta equals T gamma, and so on. This is equation 5.1. The second 

condition was that the pressures in the various phases must be equal to each other; P alpha equals 

P beta equals P gamma and so on. The chemical potential of each of the species present in the 

various phases must be equal to each other. For example, if mu 1 is the chemical potential of the 

species 1, mu 1 in alpha must equal mu 1 in beta must equal mu 1 in gamma and so on across all 

the other phases that are present. mu 2, which is a chemical potential of species 2 in the alpha 

phase must equal mu 2 in the beta phase must equal mu 2 in the gamma phase, and so on. 



 We can write one such equation for each of the species that are present or each of the components 

that are present. So, if you look at this, if there are C components that are present, we will have 

C such equations.  Not just that; we also saw that each one these equations is actually a composite 

of … if π is a total number of phases (π – 1) equations. For example, T alpha equals T beta is one 

equation, T beta equals T gamma is another equation, and so on.  Therefore, if there are pi phases, 

there would be pi minus 1 different equations here. That is valid for each one of these composite 

equations. This is what we saw in the last class – very fundamental. So, it is good go over it again. 
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Then, we also saw the phase rule for non-reacting systems. The way we went about deriving the 

phase rule was if we are considering a system, containing π phases and the number of components 

is C, then, we saw that the number of equations between variables was (π – 1) pi minus 1 into C 

plus 2. 
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We saw earlier the number of variables was π (C + 1). We know from mathematics that, if the 

number of variables equals the number of independent equations in a system or in a set, then we 

have a unique solution.  Or, at least the number of variables must be greater than the number of 

independent equations connecting them. Only then will we have a possibility of realistic or 

meaningful solutions.  If the number of variables is less than that … it is not something that we 

would prefer. Therefore, this is the condition that we looked at: the number of variables π (C + 

1) in a system that we considering, must be greater than or equal to (π – 1)(C + 2), which is the 

number of independent equations between them.  … When we transposed this into getting 0 on 

the right hand side, then we got  𝐶𝐶 −  𝜋𝜋 + 2 ≥ 0. In other words if we have 𝐶𝐶 −  𝜋𝜋 + 2 = 0, we 

have a unique solution set. And, if we have 𝐶𝐶 −  𝜋𝜋 + 2 > 0, then if we are able to supply that 

many number of variables, then the system is uniquely defined. This is essentially what this 

means. 
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This … brought us to the concept of degrees of freedom – this is where it arises from – the degrees 

of freedom was 𝐶𝐶 −  𝜋𝜋 + 2 that we saw earlier.  This is nothing but the number of variables that 

are short … in equating the number of variables to the number of independent equations that are 

available. Therefore, if we supply these variables, the F number of variables, then the system is 

uniquely defined. Therefore, the application of phase rule tells us the number of independent 

variables that are required to completely specify the state of the system, if the number of phases 

and components are known. Then, we worked out an example, and we started looking at the 

Clausius-Clapeyron equation. 
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We said that the Clausius-Clapeyron equation is valid for any two different phases.  We will 

typically use this when there is a phase change that is occurring – phase change at equilibrium. 

Therefore, we are looking at vapour-liquid, solid-liquid or solid-vapour phases; these are the three 

phases that we are look at in this particular course. We said that, at equilibrium, the chemical 

potential of a certain component between the two phases must be equal.  Therefore, we mu alpha 

1 must be equal to mu beta 1. This ‘1’ determines the conditions of temperature and pressure that 

are specified at that particular point. So, 𝜇𝜇𝛼𝛼1  =  𝜇𝜇𝛽𝛽1 is the basic criterion. 
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Then we went about deriving 𝑑𝑑𝜇𝜇𝛼𝛼 =  𝑑𝑑𝜇𝜇𝛽𝛽.  If we consider mu as a function of temperature and 

pressure, easily measurable variables, then, this total differential can be written in terms of the 

partial differentials; that we have already seen.    
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Then we took a detour, and I realized that I have not told you why we took the detour. We took 

the detour essentially to express the temperature-pressure functionalities of the chemical potential 

in terms of the other variables, on which we have a better handle. That is a reason, and also, we 

are going to establish one other relationship, where it becomes easy for our manipulations later 

on.  
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When we took the detour, we … started to consider this equation 2 15:  

𝑑𝑑𝐺𝐺𝜕𝜕 =  − 𝑆𝑆𝑑𝑑 𝑑𝑑𝑑𝑑 +   𝑉𝑉
𝑑𝑑

 𝑑𝑑𝜕𝜕 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

 

Then, when we employed the reciprocity relationships that we picked up in module two over two 

combinations, I mean two parts of this equation the right hand side at a time, … we got that  
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Similarly, we got the temperature functionality as partial molar entropy. Therefore, these where 

the terms in the previous equation, if you recall … we will write that again.  Therefore, we will 

take look at that. 
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Then, we also derived  

�
𝜕𝜕�𝜇𝜇𝑖𝑖 𝜕𝜕� �

𝜕𝜕𝜕𝜕
�
𝑃𝑃,  𝑛𝑛𝑖𝑖 

=  − 𝐻𝐻�𝑖𝑖
𝑇𝑇

𝜕𝜕2
  

 

 

(Refer Slide Time: 08:47) 

 
 

 



So, this is where we left off in the last class.  The earlier equations that we derived were for a 

generic system with n number of moles, and so on. Then, we started to consider a pure substance.  

For a pure substance, we know that the partial molar properties are nothing but the properties per 

mole of the pure substance. And therefore, the equivalent equations, you know, the temperature, 

pressure functionalities of mu as well as the dou mu by T expressions that we saw earlier, turn 

out to be these special equations for 1 mole of a pure substance.  
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This is where we left off last time, and now what we will do is we will substitute these … 

remember, this was a detour … we will go back from the detour to … considering the case of 

equilibrium of a pure substance between two phases. 
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This was the equation that we had gotten by equating dmu alpha equals dmu beta;  
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This was equation 5.10, at which point we took a detour. Now we are going to substitute for these 

expressions in terms of 5 16, 5 17.  dou mu alpha douT at constant P was nothing but minus S 

alpha that we saw for 1 mole a pure substance. Therefore, minus S alpha dT, plus dou mu alpha 

douP at constant T, we found was V alpha the molar volume in the alpha phase of the pure 

substance, dP.  This equals minus S beta dT plus V beta dP. … Taking dP dT and writing as a 

derivative – these are differentials and we are getting the derivative from that. 

 

−𝑆𝑆𝛼𝛼 𝑑𝑑𝑑𝑑 +   𝑉𝑉𝛼𝛼 𝑑𝑑𝜕𝜕 =  − 𝑆𝑆𝛽𝛽 𝑑𝑑𝑑𝑑 +   𝑉𝑉𝛽𝛽 𝑑𝑑𝜕𝜕  
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If we do that,  

𝑑𝑑𝑃𝑃
𝑑𝑑𝜕𝜕

 =  𝑆𝑆𝛼𝛼− 𝑆𝑆𝛽𝛽
𝑉𝑉𝛼𝛼− 𝑉𝑉𝛽𝛽

  

Earlier, these were differentials, which can be interpreted as small distances on a graph –  a 

geometrical interpretation.  And we know that that (dP dT) can be interpreted as a derivative, as 

long as the dimensions that are considered are extremely small – in the limit that tends to 0, and 

so on.  



We will call this equation 5.19.  This is a nice expression, but this is not very useful. So, we will 

make it a little more useful.  Because P, T, and V are fine; we also have entropies here which are 

not very easily measurable or as easily measurable as P, T and V are. 

To do that, let us consider this.  At equilibrium, the transition between the two phases can be 

considered to be reversible. You know the rate of one process in one direction equals rate of the 

other process in the other direction, and so on. It is a good assumption to consider that process as 

reversible. If we consider the process as reversible, we can use the second law statement and the 

second law definition. Also … we will consider this a little later.  Just by considering the second 

law conditions, we can write  

𝑆𝑆𝛼𝛼 −  𝑆𝑆𝛽𝛽  =  
𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑

 =  
𝐻𝐻𝛼𝛼 −  𝐻𝐻𝛽𝛽

𝑑𝑑
 =

𝐿𝐿
𝑑𝑑

 

This was the statement of the second law, and that we are applying to this particular case of phase 

change, Q reversible by T. Now let us bring in this fact; the heat goes only towards changing the 

phase. Therefore, this Q reversible can be replaced by the difference in enthalpy between the two 

phases. There is nothing else that is happening there, the heat interaction goes directly toward 

changing the phase.  

Therefore, the Q reversible for this particular process can be replaced by the delta H which 

happens to be H alpha minus H beta. Therefore, S alpha minus S beta becomes equal to H alpha 

minus H beta by T which can be written as L by T, where L is the latent heat of the phase change.  

We will call this equation 5 20.  Note that this is latent heat for the phase change, and it is not 

limited only to the liquid to vapour change, which is typically given in textbooks to begin with. 

This is applicable for the latent heat of vapourisation, latent heat of melting or sublimation. 
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Therefore we can write equation 5 19, as 
𝑑𝑑𝑃𝑃
𝑑𝑑𝜕𝜕

=  𝐿𝐿
𝜕𝜕 ∆𝑉𝑉

  

 

 delta V was V alpha minus V beta, the change and specific volume between the two phases. Let 

us call this equation, 5 21. This equation is called the Clausius-Clapeyron equation, and this valid 

for phase changes, as we had seen, because those were the conditions under which we derived it. 

We had assumed equilibrium conditions for a phase change and reversible conditions for a phase 

change and derived this.  This is valid for any phase change.  Going by the left hand side dP dT, 

it can be interpreted as the change in pressure per unit change in change in temperature that is 

needed to maintain equilibrium.  Slightly abstract … take a look at it for now, and then it will 

make sense probably much later. 
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For the vapour-liquid equilibria or vapour-solid equilibrium, the difference between the vapour 

volume and the liquid or the solid volume is negligible.  You know, the vapour volume of a unit 

amount or a unit mass of a certain substance is typically tens of times the liquid volume; typically 

about thirty to fifty to eighty times the liquid volume for a unit mass of the substance. And there 

is a certain ratio here, which is quite large for vapour to solid also. Therefore, this delta V, if you 

can recall, was nothing but … in the case of vapour-liquid equilibria, V vapour minus V liquid, 

or V gas minus V liquid.  We can replace the delta V by approximately V volume of the gas itself.  

We are essentially neglecting the volume of the liquid or the solid here. And volume of the gas 

can be approximated, if the gas can be considered to behave ideally.  You know, under conditions 

of normal temperature and pressure, this is a reasonably good assumption, except if you are 

dealing very tricky gases. Therefore, the volume of gas … we are going to use the ideal gas law 

and express it as RT by P;  

 

∆𝑉𝑉 ≅  𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔  ≅  𝑅𝑅 𝜕𝜕
𝑃𝑃

  

 

We will call this equation 5 22. And if we substitute this 5 22 into the Clausius-Clapeyron 

equation, 5 21, we get  
𝑑𝑑 ln 𝑃𝑃
𝑑𝑑𝜕𝜕

≅  𝐿𝐿
𝑅𝑅 𝜕𝜕2

  

 

Let us call this equation 5.23.  If you are not able to see this, let us just go back a little bit. 
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Now, what we have done essentially, here, is replace delta V by V gas; this was RT by P. And 

therefore, if we combine all Ps together, we get dP by P equals L by TV of the vapour times dT.  

Integrating that dP by P we get the log term there, and the other terms make sense. 
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Therefore, we get dlnP by dT equals L by RT squared.  This is typically a very good 

approximation as long as the vapour pressure is not very large. If vapour pressure is large then 

be careful in using this approximation.  
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We have looked at conditions for equilibrium, the phase rule which are very fundamental aspects. 

And then we looked at Clausius-Clapeyron equation, for the phase change.  Let us work at an 

example. This example will take time to work out, I will first read out the problem. I will give 

you say about 15 minutes to think about it and work out the initial aspects. And then I will give 

you more time with hints to work out the final solution.  

Let me read out the problem first. Isopropanol … you know by now … our popular substance, is 

evaporating under pure substance conditions at 87.4 degree C and 1 bar. It is evaporating under 

pure substance conditions, which means that the temperature and pressure correspond to points 

of the vapourisation line in a PT diagram. Assuming equilibrium conditions, what is the change 

in pressure per unit change in temperature that is needed to maintain equilibrium? And the data 

that is given here is that, the latent heat of vapourisation for isopropanol is minus 44 kilojoules 

per mole.  

There is a certain background to this. I would like to share that here. I had assigned my students, 

when I taught this course for the first time to come up with problems, because that is good way 

of learning the subject itself at a much higher level, and also it will contribute to other aspects 

such as this.  This happens to be a modified form adapted from a problem formulated by one of 

my students, Akhil Sai Valluri. Please go ahead; take 15 minutes and figure out how you would 

go about approaching the problem. Then I will give you some hints. 
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You would have had time to think through this, and hopefully the thought became focussed 

towards recognizing that this is a substance evaporating under pure substance conditions, or 

substance evaporating. Therefore, it is changing its phase from liquid to vapour.  Therefore, it is 

a case of phase change. And what is required is change in pressure per unit change in temperature 

that is needed to maintain equilibrium. Therefore, the whole process is under equilibrium 

conditions. 
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So, what does this bring to mind?  Definitely the Clausius-Clapeyron equation. In fact, the left 

hand side of the Clausius-Clapeyron equation  

𝑑𝑑𝑃𝑃
𝑑𝑑𝜕𝜕

=  𝐿𝐿
𝜕𝜕 ∆𝑉𝑉

  

… dP dT is what is required to be calculated as a part of this particular problem. If you can find 

dP dT by evaluating the right hand side… In other words if we know L T delta V, we can 

substitute the values here and find dP dT, and that is what we need.  L is already given – that is 

the latent heat of vapourisation. So, if we find T delta V … T is also given; it is known from the 

problem statement. It is the temperature at which the vapourisation is taking place. Therefore, if 

you find delta V then we are actually done. So, how do you go about finding delta V is the hint 

that I am going to leave you with for another 15 minutes or so … let us say about 10 minutes, 

and let us see how you come about with the solution. 

Hopefully you would have figured out how to find out delta V. Since we are almost out of time; 

I am just going to give you some hints, give you time to work it out and show you the complete 

solution when we meet the next time.  delta V is nothing but V of the vapour minus V of the 

liquid, or V of gas minus V of the liquid. 

 Therefore, you need to find a way to figure out what the molar volume of the gas phase is, and 

molar volume of the liquid phase is. What does this bring to mind?  Does this bring to mind 

something to do with equations of state?  That is exactly what we are looking at.  So, go back to 

what equations of state are. And this is isopropanol here.  See whether you are able to find out 

the molar volume of the vapour and the molar volume of the liquid under the saturated conditions 

of the liquid-vapour transition. Please take this as homework.  When we meet the next time, when 

we begin the class, I will give you the solution. 

Go ahead please. 

 

 


