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Lecture – 39 
Clausius Clapeyron Equation 

 
Welcome!  

 

Let us, begin to look at one of the fundamental relationships, when we consider phases in 

equilibrium, especially, when transitions between phases takes place.  That is called the Clausius-

Clapeyron equation. We are going to start doing this, and let us see how far we get today. 
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Let us consider our system as a pure substance.  We will start with pure substances. That is a 

good to understand the basis. Let us consider our system as a pure substance in two phases, say 

alpha and beta at equilibrium.  What I would like you to note is, that we have not specified the 

nature of the phase. These alpha and beta could be any 2 phases.  They could be liquid and vapour 

phase, liquid and solid phase, vapour and solid phase.  That is what is given here: The following 

discussion, unless indicated otherwise, is applicable for any 2 phases … they could be vapour-

liquid, solid-liquid, solid-vapour. Since the phases are in equilibrium at those conditions of 

temperature and pressure, which we will indicate by the superscript, 1, we can certainly write 

from the condition of equilibrium, you know the first 5 equations, equations 5.1 to 5.5 and so on, 



mu alpha at the conditions specified by the temperature and pressure – we will indicate that by 1 

– must equal mu beta, which is a chemical potential of a pure component in the other phase, in 

the beta phase. That is, the chemical potential of the pure component in the alpha phase at certain 

conditions of temperature and pressure must equal the chemical potential of the same component 

in the beta phase at the same conditions of temperature and pressure.  This automatically comes 

from the condition of equilibrium.  

 

𝜇𝜇𝛼𝛼1 =  𝜇𝜇𝛽𝛽1  

 

Let us call this equation 5.8. 
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In the neighborhood of this point, which means a very small region around this point, 

mathematically speaking, where the equilibrium conditions can be considered to exist. You know 

it is a hypothetical situation here, but, we need the concept of neighborhood to completely 

develop this particular concept. Therefore, in the neighborhood of this point where the 

equilibrium conditions can still be considered to exist, we can write mu alpha 1 plus d mu alpha 

– that is a change from the point 1, in the neighborhood of point 1, 

𝜇𝜇𝛼𝛼1 +   𝑑𝑑𝜇𝜇𝛼𝛼  =  𝜇𝜇𝛽𝛽1  +   𝑑𝑑𝜇𝜇𝛽𝛽  

 



Of course, from 5.8 the previous equation, we know that mu alpha 1 equals mu beta 1. Therefore, 

they can be cancelled. Therefore, the differential of mu alpha equals the differential of mu beta.   

𝑑𝑑𝜇𝜇𝛼𝛼  =  𝑑𝑑𝜇𝜇𝛽𝛽  

Let us call that equation 5.9. 

Since the chemical potential of a pure substance is a function of only temperature and pressure, 

we can write equation 5.9 in terms of the expanded functionalities. You know this is the total 

differential; writing it in terms of partial differentials, from the theorem in mathematics,  
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Let us call this equation 5.10.  
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Now, let us take a slight detour to establish a few things, and then we will come back to our 2 

phases and so on. From equation 2.15, 2 15 that we saw earlier, in the module number 2,  

𝑑𝑑𝐺𝐺𝜕𝜕 =  − 𝑆𝑆𝑑𝑑 𝑑𝑑𝑑𝑑 +   𝑉𝑉
𝑑𝑑

 𝑑𝑑𝜕𝜕 +   ∑ 𝜇𝜇𝑖𝑖 𝑑𝑑𝑛𝑛𝑖𝑖𝑖𝑖   

This is the equation 2.15 that we saw earlier. 



Recall the reciprocity relationships that we, again, saw in the second module. Following the 

reciprocity relation … rather doing the reciprocity relationship for equation 2.15, the following 

relationships can be written.  
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Let us call this equation 5.11. 
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We will call this equation 5.12. 
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Further, if equation 2.3, which can be written for the total values as  

𝐺𝐺𝜕𝜕 ≡ 𝐻𝐻𝜕𝜕 − 𝑑𝑑 𝑆𝑆𝜕𝜕  



This is the definition of Gibbs free energy, and we are writing this for the total values … you 

know … not for a single mole.  If this is differentiated, with respect to n i at constant T and P and 

all other n j s, we can write in terms of partial molar properties as  

�̅�𝐺𝑖𝑖𝜕𝜕 =  𝐻𝐻�𝑖𝑖𝜕𝜕 −   𝑑𝑑 𝑆𝑆�̅�𝑖𝜕𝜕  

We are differentiating each term with respect to n i at constant T, P, and n j, and by definition 

that derivative would be G i T hash.  By definition, this derivative would be H i T hash, and this 

one would be minus T S i T hash. We will call this equation 5.13. And, from equation 2.16, we 

get  

 

�̅�𝐺𝑖𝑖𝜕𝜕 =  𝜇𝜇𝑖𝑖  

 

partial molar property with respect to the single mole there.  Therefore, we get it equal to mu i. 
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Therefore, from equations 5.14 and 5.12, equation 5.13; from 5.14 and 5.12; 5.14 is this: G i T 

hash equals mu i. and 5.12 was this, which we obtained from the reciprocity relationship.  From 

these two equations, we can write  

𝜇𝜇𝑖𝑖 =  𝐻𝐻�𝑖𝑖𝜕𝜕 +   𝑑𝑑 �𝜕𝜕𝜇𝜇𝑖𝑖
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�
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Which can be rearranged as … I am just rearranging this by T dou mu i dou T at constant P, n i 

minus mu i , and I am dividing this by T squared is nothing but, minus H i – now I have taken 

this to the other side –  minus H i T hash by T squared. Just a rearrangement. There is the reason 

for this rearrangement.  …  
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The reason for this rearrangement is this: This form is nothing but  
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If you are unable to see this, consider this as u by v, or numerator by denominator. Denominator 

function into derivative of the numerator function minus the numerator function into derivative 

the denominator function, which is 1 here, divided by the square of the denominator function and 

that is the derivative. dou mu i by T dou T at constant P, n i equals minus H i T hash by T squared. 

We will call this equation 5.15. 
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 For a pure substance, the partial molar properties are nothing but the properties per mole of the 

pure substance. You know the kind of coalesce into each other.  Thus the equivalent equations of 

5.11, 5.12 and 5.15 … you know, when we write down the equations, you can recall those, or 

you can go back and check what 5.11 5.12 and 5 15 are  



�𝜕𝜕𝜇𝜇
𝜕𝜕𝑃𝑃
�
𝜕𝜕

= 𝑉𝑉  

equation 5.16.  
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equation 5.17.  
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equation 5.18.  Our 5.11 was when you had i here and V i T hash here.  5.12 was you had a i here 

and S i T hash here. And you had to take other n also as constant.  And here, you had i and H i T 

hash here, and P and other n s to be constant here.  

Therefore, since these are written for a single mole of the pure substance, we can drop all these i 

s, and hashes, and so on because, the partial molar property becomes the property per mole of the 

pure substance. 
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What we will do, when we begin the next class is we will get back from this detour. We essentially 

wanted to come up with these relationships, and that is why we took a detour. When we begin 

the next class, we will get back to considering the 2 phases in equilibrium and the process of 



transfer from one phase, or transition from one phase to another, which is the context of the 

Clausius-Clapeyron equation.  

 

See you in the next class. 


