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Welcome!   

In the last class we started looking at multi-component systems. We initially started out with the 

ideal gas, and since we are doing everything in terms of the chemical potential, we had written 

down the chemical potential expressions for an ideal gas, which we had already seen in the earlier 

module, the third module. 
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And then we said that the real gas … in the expression for the real gas, you replace the pressure 

here,  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

where 𝜇𝜇0 is a function of temperature alone. This was for an ideal gas, and when you write it for 

the real gas, it becomes  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓   𝑎𝑎𝑎𝑎𝑎𝑎    𝑓𝑓
𝑃𝑃

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  



Then we looked at something called perfect gas mixtures and imperfect gas mixtures. Then we 

looked at something called ideal gas mixtures and non-ideal gas mixtures. And with that 

formulation we saw that we could expand them or extend that to ideal mixtures of liquids and 

solids as well as non-ideal mixtures of liquids and solids. 

So, essentially, ideal gas, real gas that was initial formulation where we went from P to f and then 

we used the perfect and imperfect gas mixtures. That is only a concept, which we will kind of 

borrow on from time to time. So, let us keep it aside for the time being. We will go through it and 

see how we defined it in a little bit. Then we went into … ideal gas mixtures and real gas mixtures. 

Then we saw that we could extend that formulation to ideal mixtures of liquids and solids as well 

as non-ideal mixtures of liquids and solids. 
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So, we have already seen this. The ideal gas is  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

For the real gas it was 

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓   𝑎𝑎𝑎𝑎𝑎𝑎    𝑓𝑓
𝑃𝑃

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

Concept-wise, the perfect mixture of gases is something for which the following can be used … 

as the chemical potential. For every component i  



𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖  

This is the partial pressure of the component i in the gas mixture. 
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And then for the imperfect gas mixture … we said we should replace this partial pressure with f 

i hat, the fugacity of the species i in the mixture.  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖           𝑓𝑓
�
𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  
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The fugacity coefficient for the species i in the mixture becomes  

𝑓̂𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

  ≡  ∅𝑖𝑖  

The earlier one the pure gas fugacity coefficient we had defined as f by total pressure P has been 

equal to phi. 

Therefore, we could write  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑝𝑝𝑖𝑖   = 𝜇𝜇𝑖𝑖0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖 𝑃𝑃𝑃𝑃𝑖𝑖  

for an imperfect gas mixture.  
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Then, this one is what we need to focus on, the ideal gas solution. The formulation that we had 

used is  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖  

The important thing being that mu i hash is a function of both temperature and pressure. And here 

we have a convenient formulation in terms of the mole fraction. This is for an ideal gas solution. 
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For the ideal solutions of liquids and solids, we use x i as the mole fraction of the component i in 

the liquid or the solid solution. 
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Then, for the non-ideal gas solution … I had earlier said real gas solution, make it non-ideal gas 

solution. We write  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑦𝑦𝑖𝑖  

This phi i brings in the non-ideality of the component in the gas solution. And for the non-ideal 

liquid or solid solution we could write  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖   𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1  

This is what we had essentially seen yesterday and reinforced and again reinforced this morning 

in this class. 



(Refer Slide Time: 05:43) 

 

Then we found that that definition especially for the non-ideal liquid and solid solutions work 

well in most liquid solution cases. Whereas, when the when the component happens to be either 

a gas or a solid at the temperature and pressure of the solution in question, then we may run into 

some difficulties, because as we change the mole fraction of the component in the solution, the 

phase could change. Therefore, we have to come up with a different formulation. We had used 

two equation formulation for that.  For the solvent we had used a subscript o and the solute we 

had used the subscript i. 
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And therefore, we could write for the solvent  

  𝜇𝜇𝑜𝑜 =  𝜇𝜇𝑜𝑜# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑜𝑜𝑥𝑥𝑜𝑜        𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾𝑜𝑜
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑜𝑜

 
→ 1  

This is for the solvent and for the solute  

  𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖        𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 0  

This was equation 4.9 and this is where we had finished up in the last class. 
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Now, let us return or look back at ideal solutions for a little bit. We are going to develop 

something important here. So, let us concentrate on ideal solutions. You know that equation 4.2, 

you can go back to your notes; it is already given here,  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖  

This works for the ideal solution case where mu i naught is the function of temperature alone. 

Now, we know that ideality is nothing but the special case of reality. Therefore, the expression 

for the real case must also be valid here. 

If we write it for the real case it should be valid for the ideal case also. The `super’ thing should 

should always include the special case also. Therefore, this 4.5 equation,  



𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖  

This equation should also be valid. Now, from equation 4.2, you know, just by transposing this 

equation, mu i or in other words, subtracting mu i naught from both sides, we get  

𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖0 =  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖 

And doing the same thing to equation 4.5 we could write  

𝜇𝜇𝑖𝑖 −  𝜇𝜇𝑖𝑖# =  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖  

Now, what I would like you to do is just subtract the second equation from the first equation and 

tell me what you get. Take about five minutes –  good to juggle,  little bit,  your brain and your 

hands and so on so forth. So, just work this out subtract equation two from equation one and tell 

me what you get. 5 minutes please. 

If you subtract equation two from equation one, you would get  

𝜇𝜇𝑖𝑖# −  𝜇𝜇𝑖𝑖0 =   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓̂𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

  

Ln a minus ln b equals ln of a by b.  Therefore, this becomes R T ln f i hat by y i.  Same equation 

here. 

(Refer Slide Time: 15:20) 

 



Now, note this argument a little carefully. We will be using this argument a few more times in 

this particular course.  𝜇𝜇𝑖𝑖# −  𝜇𝜇𝑖𝑖0 : this is the left hand side of the equation. You know that in any 

equation whatever applies to the left hand side must apply to the right hand side. So, we will look 

at dependencies here. 𝜇𝜇𝑖𝑖# is a function of temperature and pressure. 𝜇𝜇𝑖𝑖0 is a function of temperature 

alone, and … the left hand side, therefore, is definitely independent of composition. 

So, that is clear here. Therefore, the right hand side must also be independent of composition. Let 

us let us look at that point alone. It has to be independent of composition. Therefore, see this is 

R what is on the right hand side R and T here. There is no problem here. If at all we need to worry 

about composition it has to be in this term. This ratio 𝑓̂𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

 on the right hand side must remain 

constant when the composition is changed, because you have a left hand side, which is 

independent of composition.  Therefore, when you change  i here the only way that this remains 

independent of composition is that this ratio becomes independent of composition. 

Therefore, 𝑓̂𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

 must remain constant when the composition is changed, or when yi, which 

represents the mole fraction, is changed. I hope this is clear. fi is the fugacity of the pure 

component i at the same temperature and pressure as that of the solution – that we know. Or, in 

other words, fi is fi hat when yi equals 1. fi is pure component fi hat is the fugacity of that 

component in solution. Now, fi can be considered as fi hat when yi becomes 1. Now, you know 

where I am getting it. Therefore, 

𝑓̂𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

=  𝑓𝑓𝑖𝑖   

Or, by transposing the equation: 

𝑓𝑓𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑓𝑓𝑖𝑖   

  

We will call this equation 4.10. This is something powerful.  Before I go forward, let me go 

through this argument once again, because we will be using this argument a few times.  We have 

a quantity here on the left hand side, which is independent of composition.  Therefore, the right 

hand side must also be independent of composition. The only term that changes with composition 

is this.  Therefore, this has to remain constant when y i is changed between the ranges that it can 

take. If we look at one particular value there, which is when y i equals 1, f i hat by y i must equal 



f i by 1, … because when y i becomes 1 f i hat becomes f i, and therefore, f i hat equals y i into f 

i. 
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This says something powerful. It says in an ideal gas solution – we are looking only at ideal gas 

solution; remember, that is what we decided to focus on earlier – the fugacity of each component  

𝑓𝑓𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑓𝑓𝑖𝑖    

To repeat, in an ideal gas solution, the fugacity of each component, f i hat, is equal to its mole 

fraction times of fugacity which it would exhibit as a pure gas at the same temperature and the 

same total pressure. 

This is something powerful. What has it given us?  It has given us a way of estimating f i hat if f 

i is known.  This is called the Lewis and Randall rule. This name you may have heard. The Lewis 

and Randall rule, which essentially says that f i hat equals y i times f i. And as mentioned, the 

Lewis and Randall rule allows us to know the fugacity of a component in the mixture by knowing 

the fugacity of the same gas at its pure state, which is quite powerful. 

 

See you in the next class. 

 

 


