
Thermodynamics for Biological Systems: 
Classical and Statistical Aspects 

Prof. G.K. Suraishkumar 
Department of Biotechnology 

Indian Institute of Technology - Madras 
 

Lecture – 27 
Chemical Potential Formulation 

 
(Refer Slide Time: 00:19) 

 
 

Welcome!  

Now, let us get back to the module 4, thermodynamics of solutions. In module 3, previous 

module, we had looked at systems comprising of a single component or a pure substance. We 

had developed the various useful aspects from a thermodynamics view point for a pure substance, 

such as the P-V-T relationships or the equations of state in different degrees of general 

applicability. Then we looked at how to get the other thermodynamic variables U, S, H, A, G and 

so on, in terms of P, V, T, using the reduced properties and things like that. And, evaluation of 

fugacity coefficient also we saw.  All those were for a single component. 

However, the focus of this course is biological systems, and many systems of biological interest 

consist of many components. It is rare to find a system with a pure component all the time. It is 

quite easy to see that when you mix pure components we get a mixture or a solution; we’ll look 

at that a little more closely. So, with the components are mixed to make this mixture or the 

solution, there could be changes in volume, enthalpy, and so on, upon mixing. You could take 



volume one and volume two, V1 and V2. When you mix them together the total volume may not 

be V1 + V2, it could be something different from V1 + V2. 

Similarly, enthalpy H1, enthalpy H2, and may be H3, H4, depending on the number of components 

we are mixing together. Put them all together the total enthalpy may not be equal to the algebraic 

sum of the enthalpies of individual components. Therefore, the thermodynamic properties of the 

mixture or the solution may not be the same as the weighted average of the relevant properties of 

its components. I should have said the weighted average for example, you have the enthalpy H1 

and enthalpy H2 and when you mix then together total enthalpy would be what fraction of 

component 1 you have times the enthalpy of that component plus what fraction of the component 

2 you have times the enthalpy of that component. That is not going to be equal to the total 

enthalpy, all the time. 

If that is so, then it becomes an ideal solution. The ideal solution happens, in other words, if the 

thermodynamic properties of the solution are indeed equal to the weighted average of the relevant 

properties of its components. If not, we have a non-ideal solution. You notice the terms here; we 

have seen probably seen these many times, but, notice them from a fresh angle now. There is 

something called an Ideal solution and there is something called a Non-ideal solution. We will 

come back to this again and again. 
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Now, let us first consider a few aspects and concepts of relevance for multi-component systems. 

Please pay a little bit of attention to this. This forms the bedrock of further development for multi-



component systems or solutions. Let us recall that the chemical potential of the pure component, 

especially if it is an ideal gas.  We will start with simple things. If it is an ideal gas, we can write 

the chemical potential of a pure component as  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

This we have already seen, way back in equation 3.1a.  And for a real gas, you could write  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓   𝑎𝑎𝑙𝑙𝑎𝑎    𝑓𝑓
𝑃𝑃

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

 The P gets replaced by f for a real gas, and for completeness of the definition f by P, pressure, 

total pressure tends to one as P tends to 0; this was equation 3.1b. 
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Now, let us consider a concept – this is purely a concept, it is not reality. We are extracting out 

something for convenience in terms of the interaction between molecules and so on and so forth. 

We are not getting to the details here, but let us introduce a concept here and the concept is that 

of perfect and imperfect gas mixtures. To repeat, perfect and imperfect gas mixtures. 
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For a perfect mixture of a gas, the chemical potential of a component i, in that mixture … it is 

made up of many different components; let us take one component, i … it is expressed as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖  

𝑝𝑝𝑖𝑖 is the partial pressure of the component i as given here. 𝑝𝑝𝑖𝑖 is the partial pressure of the 

component i and 𝜇𝜇𝑖𝑖0 is a function of the temperature alone as we had seen earlier. This is for a 

perfect mixture of gases. 

For an imperfect mixture of gases, the chemical potential of a component i, in the mixture, is 

expressed as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖           𝑓𝑓
�
𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

𝑓𝑓𝑖𝑖  is the fugacity of the component i in solution. That hat implies solution, the component in 

solution, because the pure component fugacity may not be equal to the fugacity of that component 

in solution. To differentiate between the pure component fugacity that we had already seen 

earlier, the fugacity of the component i in solution is given as 𝑓𝑓𝑖𝑖.  And, again, we should state for 

completeness, that 𝑓𝑓𝑖𝑖 by the partial pressure of i, 𝑝𝑝𝑖𝑖 –  as you know partial pressure is the pressure 

exerted by that part of the gas mixture alone which corresponds to the component i – 

 �̂�𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0. Let us call the above equation 4.2. 



Here 𝜇𝜇𝑖𝑖0 is still a function of temperature alone. Let me repeat this, … it will become a little 

clearer. 𝑓𝑓𝑖𝑖 is the fugacity of the species i in the mixture or the solution, which may not be the 

same as the fugacity of the pure component when it exists separately. 
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�̂�𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

  ≡  ∅𝑖𝑖  

∅𝑖𝑖  is the fugacity coefficient of that component. We will call that equation 4.3  

∅𝑖𝑖 is sometimes called the activity coefficient.  We will call it the fugacity coefficient in this 

course. In this course, we will use this term activity coefficient for something else, which we will 

talk about later. So, we will limit our terminology to fugacity coefficient.  But, in some books, 

may be in some of your reference books given earlier, you will find this term activity coefficient.  

You should not get confused, when you find ∅𝑖𝑖 being referred to as the activity coefficient.  

This is to re-emphasize:  Note that for a pure component a fugacity coefficient is defined as f by 

total pressure, P, whereas, for a mixture the fugacity coefficient of the component i is defined as 
�̂�𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

. Thus, for an imperfect gas mixture, in terms of the fugacity coefficient the chemical potential 

of a species i, is written as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑝𝑝𝑖𝑖   = 𝜇𝜇𝑖𝑖0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖 𝑃𝑃𝑃𝑃𝑖𝑖  



We have replaced our 𝑓𝑓𝑖𝑖 as ∅𝑖𝑖𝑝𝑝𝑖𝑖. Note that partial pressure is nothing but, the total pressure times 

the mole fraction of that component in the gas mixture. And therefore, 𝑝𝑝𝑖𝑖 can be expanded to 𝑃𝑃𝑃𝑃𝑖𝑖. 

We will call this equation 4.4. 

We will do this again and again because this is quite a concentrated part of the course, and it will 

help to repeat things to get things smoothly and clearly. Initially, we saw ideal gas and non-ideal 

gas in terms of the chemical potential. Then we brought in the concept of perfect and imperfect 

gas mixtures; you put various pure gases together. Then you get a gas mixture and we had looked 

at perfect and imperfect gas mixtures definition that was again a concept. 
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Here, let us look at an ideal gas solution. An ideal gas solution is one for which the following 

relationship holds for every single component in the solution  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖  

This 𝜇𝜇𝑖𝑖# is different from 𝜇𝜇𝑖𝑖0.  Let us call this equation 4.5. It is a nice, simple definition; it is good 

to remember this. 

Here 𝜇𝜇𝑖𝑖# is a function of both temperature and pressure. You will have to note this.  Earlier 𝜇𝜇𝑖𝑖0 

was a function only of temperature. And note, this could be a little tricky now, …  you will get 

comfortable with this later. It is not necessarily equal to 𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃.  Because, if you 



expand this, you could write 𝜇𝜇𝑖𝑖0 plus RT ln Pyi and so on.  But note that 𝜇𝜇𝑖𝑖#  need not necessarily 

equal 𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃. Just take it on face value for now; this is a definition.  

Now, note this form:  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖  

equation 4.5. This is in terms of a certain function, which is a function of both temperature and 

pressure and the mole fraction. This is a very convenient form to write our chemical potentials. 
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The same form can be used to represent ideal solution of liquids and solids as well. Mixtures of 

liquids and solids, homogenous mixtures of liquids and solids … well, mixtures of liquids and 

solids. Earlier it was for the mixtures of gases alone. So, for an ideal solution of liquids and solids, 

for every component i  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖  

This is equation 4.6, which can be written as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖  



going by a previous way of writing things. This is a more convenient thing to remember; please 

go by this. This is … only in certain ways of representing it, if there is an interest to represent it 

in other ways …  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  

 𝑓𝑓𝑖𝑖 is the pure component fugacity of the component i. … 𝑥𝑥𝑖𝑖 is the mole fraction of the component 

i. Note this form  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖  

Earlier we had  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖  

and here we have  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖  

Therefore, we have essentially covered gases, liquids and solids. So, we have a comprehensive 

way of representing things for all the systems that we would be interested in. 
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Now, let us bring in the non-ideal gas solution. For a non-ideal gas solution the following 

relationship holds for every component i in that non-ideal gas solution. This is again gas solution. 



𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑖𝑖  

 This is equation 4.7, which can be written as  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖  

What I would like you to note is that for an ideal gas solution, our formulation was  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖  

Here, for a non-ideal gas solution it is  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑖𝑖  

This ∅𝑖𝑖 is what brings in the non-ideality aspect. 

For a non-ideal liquid or a solid solution, you could have  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖   𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1  

What did we mean by non-ideality?  If you go back, we said that if you put in various components 

then … the weighted average of their properties may not equal the actual property of the solution 

itself. So, that is the non-ideality that we are talking about. This needs a certain completion, or a 

certain part of the definition needs to be given for completion, 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1. 

Note … in the earlier case it was  �̂�𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0. In the same way vein here, but, different 

details.  Here,  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖   𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1  

We will call this equation 4.8, which can be written in terms of  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  

𝛾𝛾𝑖𝑖 is called the activity coefficient of the species i. This is a new concept that we are introducing 

in this particular module.  𝛾𝛾𝑖𝑖 is called the activity coefficient of the species i. Most importantly 



note, that it is a function of temperature, pressure as well as composition.  We have all three 

things coming in here; we need to be a little careful when we handle  𝛾𝛾𝑖𝑖. 
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Now, that definition that we gave, works well for many liquid solutions. The definition was  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖   𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1  

That works well for many liquid solutions, but not all. It poses difficulties when some of the 

components of the solution are either gaseous or solids at temperature and pressure of interest by 

themselves. They exist in a different phase when you consider them as a pure component.  

Why does this become a problem?  It will become very clear now. Before I say why it becomes 

a problem, it is very relevant here because it includes biologically relevant situations such as 

aqueous solutions of oxygen or glucose. You know when we have a bioreactor for producing 

various biologicals, and if the organisms are aerobic in the bioreactor we need to provide it with 

oxygen. The oxygen under normal conditions, standard temperature, pressure, or room 

temperature, pressure, is a gas, and it needs to be dissolved in the liquid for the organisms in the 

broth, in the bioreactor broth to take it up. 

Therefore, there we have a solution of oxygen in the water predominantly or the broth in which 

the organisms are grown.  In the broth, the oxygen is in the liquid phase; whereas, under normal 

conditions at the same temperature and pressure as the broth, it is a gas phase. In other words, if 



the mole fraction of oxygen in the broth is hypothetically varied from 0 to 1, the phase changes, 

the phase of the component changes.  And that is a problem.  We will come to that formally in a 

little while. 

Similarly, it is with glucose.  You know, glucose is a solid at normal temperature pressure – the 

powder that we eat – glucose.  When we use it for growing microorganisms, we need to dissolve 

it in a liquid, and we have a liquid solution that contains glucose. And therefore, when we change 

the concentration of glucose hypothetically in the solution from 0 to 1 mole fraction of glucose, 

then it goes from being a complete liquid at mole fraction slightly more than 0 to a solid at a mole 

fraction of 1. So, there we have some difficulty; we will see how to handle that. 

Again that is what is said here, the difficulty arises because a change in phase of the solution will 

occur when the mole fractions of the components are varied between the two extremes of 0 and 

1. 
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But we are saved by noting this aspect. The behavior of the components approaches ideality both 

when the mole fraction tends to 0 or 1. When the mole fraction is 0, it is a complete solvent with 

no component in it.  When it tends to one it is all pure component. Therefore, at the two extremes, 

we approach ideal behavior; we are not in the solution regime. Therefore, we need a suitable 

convention that involves this. We need to use a different convention for solutions when some of 

the components are gases or solids. 



For such solutions a difference is made between the solvent and the solute.  We write an equation 

for the solvent and another equation for the solute. The solvent is indicated by the subscript 0 or 

o, and for the solute we use the subscript i. 
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For example, the solvent chemical potential is expressed  

  𝜇𝜇𝑜𝑜 =  𝜇𝜇𝑜𝑜# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑜𝑜𝑥𝑥𝑜𝑜        𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑜𝑜
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑜𝑜

 
→ 1  

Whereas, with the solute we write this as  

  𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖        𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 0  

Here, as x i tends to 0 for the solute gamma i tends to 1. Therefore, this makes it consistent. This 

is the set of definitions that I use while dealing with tricky solutions.  … As usual biological 

systems are full of tricky solutions. So, we need to use this.  We will call this equation 4.9. 

Since we have covered quite a bit of intense, intense material today, let us go through it again for 

completeness.  You know, this is going to become a part of you only if you look at it a few times. 

I am going to help you, as a part of the class itself to look at it one more time. We said that we 

have an ideal solution … Just reviewing in a systematic fashion what we did so far today.  I think 

it is worthwhile doing that now. 
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Ideal solution is the one if it happens if thermodynamics properties of the solution are equal to 

the weighted average of the relevant properties of the components, which may not always be the 

case. When it is not equal to the weighted average, it becomes a non-ideal solution, which is the 

usual case. Then we said we will look at a few aspects and concepts of relevance for multi-

component systems. We recalled initially, the expression for chemical potential for a pure 

component that we wrote for an ideal gas. We said that for an ideal gas the chemical potential  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

When it became a real gas, when, there is interaction between molecules that need to be 

considered, then, we said, we could write  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓   𝑎𝑎𝑙𝑙𝑎𝑎    𝑓𝑓
𝑃𝑃

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

And, we said that we will introduce a concept that we will use later which is that of perfect and 

imperfect gas mixtures. Please take this on face value as if now. For a perfect gas mixture, the 

chemical potential of component i in the solution is expressed as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖  

Here you have the partial pressure, and 𝜇𝜇𝑖𝑖0 is a function of temperature alone. For an imperfect 

mixture of gases, we had the chemical potential of component i as  



𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖           𝑓𝑓
�
𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

𝑓𝑓𝑖𝑖 is the fugacity of the component i in solution, which could be different from the fugacity of the 

pure component itself, which is given without the hat.  For completeness we will have to 

say  𝑓𝑓
�
𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0.   
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We then we said that the same way that we defined the fugacity coefficient ∅𝑖𝑖 for a pure 

component,  

�̂�𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

  ≡  ∅𝑖𝑖  

there it was just f by P … and here we have for a component and solution of an imperfect gas 

mixture.  Sometimes called the activity coefficient also, but, do not confuse this with the activity 

coefficient that we use later. In this course I said that we will use fugacity coefficient for ∅𝑖𝑖 and 

activity coefficient for 𝛾𝛾𝑖𝑖.  For an imperfect gas mixture in terms of fugacity coefficient, we could 

write,  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑝𝑝𝑖𝑖   = 𝜇𝜇𝑖𝑖0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖 𝑃𝑃𝑃𝑃𝑖𝑖  
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Now, we looked at ideal gas solutions.  The ideal gas solution is one for which the following 

relationship holds for each component,  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖  

 𝜇𝜇𝑖𝑖# is a function of both temperature and pressure – in the gas phase. Also note that that 𝜇𝜇𝑖𝑖#  need 

not necessarily equal 𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃.  
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What is nice about this formulation is that you can directly extend it to the ideal solutions of 

liquids and solids as well.  I hope you are able to visualize liquid solutions.  That is a little easier, 

but, solid solutions too, where all the components of this solution are solids. Here  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖  

𝑥𝑥𝑖𝑖 is the mole fraction of the component i in that particular liquid or solid solution. This can be 

written as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖  

which is equal to  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  
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Then, for a non-ideal gas solution, we said that the following relationship holds.  Again, the same 

beautiful formulation,  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑖𝑖  

yi is the mole fraction. This equation could also be written as  



𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖  

For a non-ideal liquid or a gas solution, we could  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖   𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1  

𝛾𝛾𝑖𝑖 comes in for a non-ideal liquid or a gas solution.  This could also be written as  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖0 +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖  

𝛾𝛾𝑖𝑖 is a function of temperature pressure and composition. 
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Then we said that this definition works well for many liquid solutions, but, falls apart when one 

of the components is either a gas or a solid as the case with some of the biologically relevant 

solutions such as aqueous solutions of oxygen or glucose. We said that when the mole fraction is 

near 0 then of course, it is a liquid solution – mole fraction of oxygen in a solution is near 0, then 

it is a liquid solution. If the mole fraction of oxygen is increased to 1, it of course, becomes a total 

gas at the conditions of interest, the room temperature and so on. 

Similarly, glucose in solution is a liquid solution as we slowly increase the mole fraction to 1, it 

becomes pure glucose which is a solid. For such cases, this definition will not work, essentially 

because there is a change of phase that occurs when the mole fraction of the components are 

varied between the two extremes of 0 and 1. 
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For this, we need at a different formulation and we had used the fact that the behavior of the 

components approaches ideality then the mole fraction tends to either 0 or to 1. At both extremes 

the behavior becomes ideal as expected; 0: there is no component; 1: that is the only component. 

So, that will be either none, or a pure component. So, that is an ideal situation. 
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For that if we represent the solvent by subscript o and the solute by subscript i. Then for the 

solvent we wrote  



  𝜇𝜇𝑜𝑜 =  𝜇𝜇𝑜𝑜# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑜𝑜𝑥𝑥𝑜𝑜        𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑜𝑜
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑜𝑜

 
→ 1  

And, for the solute, we needed to write 

  𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖        𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 0  

Both these put together, needs to be used in such a situation – as we said in many biological 

systems – that we call as equation 4.9. Since, we have seen some intense material today, let us 

stop here.  We are also all most out of time, and when we come back tomorrow, we will continue. 

 

See you in the next class. 

 

 


