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Welcome!  

Over the past eight to nine lectures we have seen many aspects related to thermodynamic 

properties of pure fluids. It might be worthwhile reviewing whatever we have seen so far, so that 

the learning is better. Let us spend today in reviewing the thermodynamic properties of pure 

fluids that we have covered so far. 
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We first looked at what a fluid was – it is either a gas or a liquid that we all know. And then we 

said, we were going to look at easy to measure thermodynamic properties, which are essentially 

P V T, of gases. Then we said, we would extend it, as appropriate, to liquids; first gases and then 

to liquids. And then we said that, we would express the other thermodynamic properties such as 

Internal Energy, Entropy, Enthalpy, Helmholtz free energy and Gibbs free energy, as well as, let 

us say, the fugacity coefficient in terms of the more easily measurable P, V and T. That was the 

whole scheme of things for this module. 
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And we first looked at an ideal gas, which you are already familiar with from your earlier classes. 

So, we will not spend much time on that.  We know that the relationship between P V and T for 

an ideal gas is  

𝑃𝑃 𝑉𝑉 = 𝑅𝑅 𝑇𝑇  

for 1 mole of an ideal gas, or molar volume considered here. And these results, when there are 

no interactions between the molecules of the gas – that is when a gas would be ideal. And so, it 

happens that some gases, some noble gases do follow the equation of state for ideal gas. This is 

called an equation of state. Any relationship between P, V and T is an equation of state.  And this 

is where we brought in things specific to our course. 
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We said it in terms of the chemical potential, we will define or we have already defined the ideal 

gas as something that follows  

𝜇𝜇 =  𝜇𝜇0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

In fact, we have defined, what a chemical potential is earlier. We are defining what an ideal gas 

is? In terms of the chemical potential in this module, we said  

𝜇𝜇 =  𝜇𝜇0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  



that satisfies this equation is an ideal gas, where  𝜇𝜇0 is a function of temperature alone. It is quite 

easy to see here, you know this can be considered of the form  

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐  

straight line equation. Therefore, if you plot y, which is 𝜇𝜇 here, versus 𝑙𝑙𝑙𝑙 𝑃𝑃, which is x here, then 

you should get a straight line with this as the intercept. 

Therefore, the ideal gas is one whose chemical potential at constant temperature is a linear 

function of the logarithm. The natural logarithm or whatever logarithm that one takes of it is 

pressure. 
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Then, we started looking at non-ideal or real gases which of course, most gases are real or non-

ideal. Or in other words they do not follow the equation of the state P V equals R T. And to 

describe them, we brought in the variable fugacity in terms of the chemical potential that, we 

have seen fugacity can be given as  

𝜇𝜇 =  𝜇𝜇0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓            𝑓𝑓
𝑃𝑃

 
→ 1       𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0 

This is for a real gas or all gases, you know when it is a real gas, it should also include ideal gases 

or a real gas formulation should include an ideal gas formulation. Therefore, 

 



𝜇𝜇 =  𝜇𝜇0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓  

 instead of RT ln P should be able to define all gases that is what we said. And this is not complete 

without stating that f by P will tend to 1 as the pressure goes to 0. 

Therefore, quite easy to see under limiting conditions, when f by P goes to 1, the fugacity is 

actually equal to the pressure. So, it is fine for ideal gases also. We defined something called a 

fugacity coefficient,  

𝑓𝑓
𝑃𝑃

 ≡  ∅  

which is unique to a particular pure substance. It is quite easy to realize that, we need more 

mathematical, more accurate mathematical representations, because PV = RT is not going to the 

job anymore. 
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The first complication that we saw, or the first improvement that we saw in the equation of state 

to represent real gases is the virial equation of state. It is to know what are virial equation of state 

is which is written in terms of what is called the compressibility factor, compressibility factor is 

nothing but,  

𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅

 ≡   𝑍𝑍  

Z  can be expressed in terms of a power series in P and that is called a virial expansion. For 

example,  

𝑍𝑍 = 1 +  𝐵𝐵2 𝑃𝑃 +  𝐵𝐵3𝑃𝑃2 +  𝐵𝐵4𝑃𝑃3 +  𝐵𝐵5𝑃𝑃4 +  …  

This is a virial expansion in pressure for the gas. Here B2, B3 are called the virial coefficients, the 

second virial coefficient B2, third virial coefficient B3 and so on. 
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And we also said that, Virial coefficients are actually they represent the interactions between the 

molecules comprising the gas and therefore, they can actually be found from theory statistical 

mechanics. For example, B2 represents interactions between molecules taken 2 at a time; B3 

represents interactions between molecules taken three at a time and so on. 

Also for low enough pressures say about a few bar, just the first two or three terms of the Virial 

expansion is good enough to give an acceptably accurate representation of the gas behaviour. But 

higher the pressure, more terms are needed to accurately represent the behaviour and we also saw 

that the Virial expansion can be written in terms of molar volumes. Of course, since it is direct 

function of pressure, this has to be an inverse function of volume. Therefore,  



𝑍𝑍 =  1 +  𝐶𝐶2

𝑉𝑉
+  𝐶𝐶3

𝑉𝑉2 +  𝐶𝐶4

𝑉𝑉3 +  𝐶𝐶5

𝑉𝑉4 + ⋯  

And C2, C3 can also be calculated from theory. 
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We did an example, where we looked at how to use the virial equation. To calculate some 

properties of interest in this case I think, we did the volume of the vessel. We will not go through 

the example again. 

 

(Refer Slide Time: 08:23) 



 
 

If you are interested, you can go back to the part of lecture and look at it again. 

Since, some of you may have looked at an iterative solution for the first time let we, let me just 

run through it again here. An iterative solution comes about, when especially, when you have 

higher order equations polynomial expressions here, we had a cubic equation. Therefore, we set 

it up of the form you know we had  

𝑍𝑍 =  1 +  𝐶𝐶2

𝑉𝑉
+  𝐶𝐶3

𝑉𝑉2  

but we knew that we were looking for V. 



Therefore, if we set up the equations as set, we have V on the left hand side and V on the right 

hand side. You can do an iterative process to get at the solution and to do that, we replaced Z by 

P V by R T. Which is the definition of Z and thus, we got V on the left hand side and this on the 

right hand side.   

𝑉𝑉 =   𝑅𝑅𝑅𝑅
𝑃𝑃
�1 +  𝐶𝐶2

𝑃𝑃
+  𝐶𝐶3

𝑃𝑃2
�  

To solve iteratively for V the procedure was to guess a certain value of V and substitute it into 

the right hand side to find the value of the right hand side. Then compare that value to the guessed 

value or in other words take the difference. If the calculated value was close enough to the guessed 

value, you know close enough is I said was the operator word here, close enough to the guessed 

value. Then the guessed value was the needed value. 

Otherwise the calculated value is put back into the right hand side; rather it is used as the second 

guess that is put back into the right hand side to calculate third value. Then, that is compared with 

the second value; this process is continued till a certain convergence. As it is called in other 

words, the difference between the calculated value and guessed value is small enough compared 

to the value of V itself. For example, in this particular case, if it is less than, let us say about 1 or 

2 percent it should be acceptable for most of our needs. These are the details of the solution; we 

will not get into that and the review. 
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Let me also mention this, that it is easiest to do these iterations, iterative calculations by using a 

program and to write it in a form, that can be converted into a program for easy calculations. We 

write it as  

𝑉𝑉𝑛𝑛+1 =   𝑅𝑅𝑅𝑅
𝑃𝑃
�1 +  𝐶𝐶2

𝑃𝑃𝑛𝑛
+  𝐶𝐶3

𝑃𝑃𝑛𝑛2
�  

Therefore, V0 could be the guess value and V0 would result in V1, then if (V1 – V0) is small 

enough then, we stop the iterations there, otherwise V1 is substituted here to get V2 then the 

comparison is made. And, if it is small if the error is small enough the difference is small enough, 

we terminated their otherwise keep, we keep going on. 
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So, it is easy to write a program, if we represent the equation in this form and I think I will 

mention it here itself. It is the ideal gas volume is a good first guess value, for the gas volume 

usually. 

Then we looked at cubic equations of state before that, we considered whatever we did till then, 

we said that, we considered equations that describe the gas phase alone well. Then, we looked at 

the rather, we will be looking at cubic equation of state, which would represent both the gas and 

the liquid behaviour reasonably well. One of the cubic equations you may have already 

encountered in your higher second years class or in your first year courses, which is the Van der 

waals equation of state. It goes as  

𝑃𝑃 = 𝑅𝑅𝑅𝑅
𝑃𝑃−𝑏𝑏

−  𝑎𝑎
𝑃𝑃2

  

a and b are constants for a given pure substance. 
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We said that the a and b can be calculated from critical pressure and critical temperature values.  
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This might be worthwhile. Let me recall our P V diagram here, you know P V the variation 

between pressure and specific volume for a pure substance. Let us focus on this curve alone, there 

are many many parts to this diagram. In other words these are pressure specific volume 

combinations or specific volume pressure combinations, where the different phases exist. We 

said under this dome you have the saturated phase, which is the mixture of liquid and vapour. 

And the top point of this is the critical point beyond this, you have critical behaviour where the 

properties are very different, we said that we are not going to look at the properties of the critical 

phase in this particular course. So, this is the critical point just to recall. 

And from that critical point, which is tabulated for pure substances and that tabulation is available 

in the appendix of your text book. We could get the values of a and b by these expressions 

𝑎𝑎 =  27 𝑅𝑅2𝑅𝑅𝑐𝑐2

64 𝑃𝑃𝑐𝑐
  

𝑏𝑏 =  𝑅𝑅
 𝑅𝑅𝑐𝑐

 

8 𝑃𝑃𝑐𝑐
  

This is for the Van der Waals equation of state. 
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Then another popular cubic equation of state, we saw as the Redlich-Kwong equation of state. 

𝑃𝑃 = 𝑅𝑅𝑅𝑅
𝑃𝑃−𝑏𝑏

−  𝑎𝑎
𝑅𝑅0.5  𝑃𝑃 (𝑃𝑃+𝑏𝑏)   

We said the a and b in the Redlich-Kwong equation of state are can also be calculated from the 

critical properties,  

𝑎𝑎 = 0.42748 𝑅𝑅2𝑅𝑅𝑐𝑐2.5

𝑃𝑃𝑐𝑐
  

𝑏𝑏 =  0.08664 𝑅𝑅 𝑅𝑅𝑐𝑐
 

𝑃𝑃𝑐𝑐
  



Then, we also saw the basis for writing these a and b values in terms of Tc Pc and so on. We have 

equivalent expressions for the Vander Waals equation of state also. 

This was given as a home work and the basis for that is as follows. Let us go back to our P versus 

V diagram again, if you look at this point here at this point you have a 0 slope, you know the 

slope changes sign. Therefore, 𝜕𝜕𝑃𝑃
𝜕𝜕𝑃𝑃

  at a particular temperature. Therefore, �𝜕𝜕𝑃𝑃
𝜕𝜕𝑃𝑃
�
𝑅𝑅

= 0 at the critical 

point, not just that the sign it is also an inflection point which means, if you look at the derivative 

the sign of the derivative also changes at this point. Therefore, this becomes a inflection point 

and therefore, the second derivative �𝜕𝜕
2𝑃𝑃

𝜕𝜕𝑃𝑃2
�
𝑅𝑅

= 0. 

We said we could use these two criteria or these two relationships that have been that become 

apparent to calculate the a and b values in terms of the critical constants. This is actually available 

in your text book chapter 3, if you want you can look at that. 
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And then, we went to the estimation of volumes using the equations of state. We said that the 

Redlich-Kwong equation can be used to estimate volumes of pure component. And since it is a 

cubic equation we need an iterative solution, the initial gas of course, is important and So on, we 

said. 
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The good initial gas for vapour volumes is through the ideal gas equation a good initial gas for 

the liquid volumes is from the constant b. Because remember that V minus b term either in the 

Vander Waals equation or in the Redlich-Kwong equation of state. Therefore, that gives you an 

idea that b represents the volume that is occupied by the molecules. When it is a gas the molecules 

are further apart and therefore, the fraction of volume that is occupied by the molecules is less. 

Whereas, in the liquid they are all close together and this value of b could be the first guess that 

one could make. When one is looking at liquid volumes, it is quite easy to see that, you put all 

the molecules together and you choose the total volume of the molecules. That should give you 

some value of the volume in the ball park of the liquid volume that is idea with which these are 

chosen. And to set up the Redlich-Kwong equation for the iterations itself, we went through a 

strategy, we multiplied the Redlich-Kwong equation by V minus b by P, to get it of this form. 
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And to facilitate for vapour volumes, we had written it as  

𝑃𝑃 = 𝑅𝑅𝑅𝑅
𝑃𝑃−𝑏𝑏

 −  𝑎𝑎
𝑅𝑅0.5  𝑃𝑃 (𝑃𝑃+𝑏𝑏)   

Therefore, you could do iterations with this for the vapour volumes. Whereas, we have a problem, 

if we consider the same form to do liquid volumes, why we said our initial gas was going to be 

b. Therefore, initial gas is going to be b you substituted here this entire term will go to 0. 

Therefore, we loose the information that is given by this term all together and may be the either 

the values that we get will not be realistic or they may not be convergence at all. 
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Therefore, we need another form of the Redlich-Kwong equation, to estimate liquid volumes and 

that was obtained by writing the Redlich-Kwong equation. Expanding, you know multiplying 

taking out common terms multiplying, cross multiplying and representing it as a polynomial 

expression in V. So, that was  

𝑉𝑉3 −  𝑅𝑅𝑅𝑅
𝑃𝑃
𝑉𝑉2 −  �𝑏𝑏2 +  𝑏𝑏𝑅𝑅𝑇𝑇

𝑃𝑃
−  𝑎𝑎

𝑃𝑃 𝑇𝑇0.5�  𝑉𝑉 −  𝑎𝑎𝑏𝑏
𝑃𝑃 𝑇𝑇0.5 = 0  

This does not pose the problem of the any term vanishing completely and thereby not contributing 

to the solution or a meaningful solution of the volume. 
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So, this form can be used to iterate for liquid volumes and to do that iteration, we had to transpose 

that equation as  

𝑉𝑉𝑛𝑛+1 =   �𝑏𝑏2 +  𝑏𝑏𝑅𝑅𝑅𝑅
𝑃𝑃
−  𝑎𝑎

𝑃𝑃 𝑅𝑅0.5�
−1
�𝑉𝑉𝑛𝑛3 −  𝑅𝑅𝑅𝑅

𝑃𝑃
𝑉𝑉𝑛𝑛2 −  𝑎𝑎𝑏𝑏

𝑃𝑃 𝑅𝑅0.5�  

In other words, we are dividing both sides by this two to get rid of the term here. Therefore, this 

is to the power of minus 1 into the remaining terms that was there in the previous equation V n 

cubed minus R T by P V n squared minus a b by P T power 0.5. 
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We again worked out an example, where we had used that Redlich-Kwong equation to estimate 

the volumes of the saturated vapour and the saturated liquid of a very popular biological substance 

ethanol. (No audio from 21:05 to 21:13) 
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Then we said that, we had seen ideal gas law, the equation of state applicable only to ideal gases. 

The Virial equations those were applicable to a wider variety of gases and cubic equations that 

are applicable either to a gas or the liquid states of the pure substance. And then we said that, we 

are going to come up with a formulation that is applicable to almost all gases. 

So, this part of the module focussed on the P V T relationships in increasing degree of generality 

in a certain sense. An ideal gas, ideal gas law a very narrow range of application Virial equations, 

a very wide variety of gases from some small number of gases. Then cubic equations could do 

both gas and a liquid and the generalized formulation could do a larger variety of gases, with 

lower input essentially. The data that you need is only the critical constants; you do not need pure 

substance specific constants. That was the, that is the advantage while using generalized 

correlations as we had seen, we will see again here. 
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So, the generalized correlations are written in terms of the reduced properties and the reduced 

property was nothing, but the ratio of the property to it is critical value. For example, reduced 

pressure  

𝑃𝑃𝑟𝑟 ≡   𝑃𝑃
𝑃𝑃𝑐𝑐

  

Similarly, reduced temperature and the reduced molar volume and to write the Redlich-Kwong 

equation in a generalized form, we did some manipulations to get rid of this form  

𝑍𝑍 = 1
1−ℎ

 −  𝑎𝑎
𝑏𝑏 𝑅𝑅 𝑅𝑅1.5 �

ℎ
1+ℎ

�  

Then we could express a and b in terms of the critical constants, that we have already seen earlier 

and therefore, if you put in substitute those expressions here for a by a and b. 
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Then which are these I had already seen, then the generalized Redlich-Kwong expression turns 

out to be  

𝑍𝑍 =  1
1−ℎ

 −  4.934
𝑅𝑅𝑟𝑟1.5 �

ℎ
1+ℎ

�  

That is the Redlich-Kwong equation written in terms of reduced properties, the advantage here is 

that you have only Tr the reduced temperature and h of course, is given in terms of Pr and Tr. So, 

Pr and Tr relationships would be applicable in general and therefore, this expression it is 

applicability becomes a lot more general, not just that. 



(Refer Slide Time: 24:22) 

 

Any equation of state can be written in terms of the reduced form or the generalized form if it is 

written in terms of the compressibility factor and reduced properties. And to reemphasize only 

data that is needed when, we use the generalized equation of state are the critical properties that 

are readily available for example, in the appendix of your text book. 
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So, then we looked at a slightly abstract concept, which was the two parameter theorem. Theorem 

has a lot of power to it, you have tremendous confidence when you have it in a theorem form you 

could apply it in many different situations. And the above development in fact, was formalized 



into a two parameter theorem, which said that all fluids have a approximately the same 

compressibility factor when compared at the same reduced temperature and pressure. In other 

words they all deviate from the ideal gas behaviour by the same extent. It was found that the two 

parameter theorems applicability was somewhat limited, it could give good results for simple 

fluids whereas, there were significant deviations for many other fluids. 

(Refer Slide Time: 25:43) 

 

To account for that, Pitzer and co-workers brought in the acentric factor. Which was essentially 

I will not go through the development. Here you can look at the notes or the presentation, these 

appropriates, these slides in the presentation later. 
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The acentric factor is essentially the difference between the logarithm of the Pr sat value at Tr 

value of 0.7 and that value for simple fluids, which happens to be minus 1. Therefore, this in 

essence gives the deviation from the simple fluid behaviour of the other fluids. Therefore, this is 

taken as a single parameter and this also is attractive, because it involves only one measurement 

at Tr equals 0.7 the vapour pressure. It is a very simple measurement to find out the acentric 

factor. We do not have to do all that the values of the acentric factors of most substances that, we 

would need is available in tables. Of course, one if and when one needs to generate that data, then 

you know how to the basis for generating that data. 
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And this led to the three parameter theorem of corresponding states, which said that all fluids 

with the same value of the acentric factor have the same compressibility factor when compared 

with the same reduced temperature and pressure. In other words they all deviate from the ideal 

gas behaviour to the same extent. This was applicable to a wide variety of gases and the kind of 

equation of state that can be written in terms of. That can be a consequence of the three parameter 

theorem is 

𝑍𝑍 =  𝑍𝑍0 +   𝜔𝜔 𝑍𝑍1  

 It so happens that the value of Z0 and Z1 are available in tables. In fact, that is the reason why 

we write in this form. So, that we can rather it was we would use this form as written here, because 

the values are available to us. 
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They work well for most cases, when we use the 𝑍𝑍 =  𝑍𝑍0 +   𝜔𝜔 𝑍𝑍1  formulation. The predictions 

are within 3 percent of the experimental value for highly non polar and slightly polar gases. Well 

they do not work as well for highly polar gases or gases that associate or quantum gases, such as 

hydrogen, helium and neon. You could also get liquid properties from the generalized correlation 

nevertheless, the importance that you that one would associate to those values are needed to be a 

little less. The values are approximate the liquid values are approximate; the gas values are very 

good. 
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Apart from the tables there are analytical expressions for Z0 and Z1 that are also available if the 

table is not available to somebody, one can use these expressions which are reasonably accurate. 

Z0 is given in terms of B0 the virial coefficient and B0 is given in terms of Tr, B0 and B1 are given 

in terms of Tr. 
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Then we worked out an example where we applied the generalized correlation and also compared 

it with the ideal gas and the virial correlations. So, the values obtained from those. 
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So, that was one major part of the module, then we went into the second major part of the module, 

which was estimation of the other thermodynamic properties are more difficult to measure 

thermodynamic properties in terms of P V T. For that, we needed a formulation and that 

formulation required. 
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What are called residual properties? Residual property is nothing but the difference between the 

actual value and the ideal gas value. For example, the residual volume VR is nothing but the actual 



volume minus the ideal gas volume, which was written in terms of the compressibility factor for 

ease of use. It will turn out to be  

𝑉𝑉𝑅𝑅 ≡   𝑉𝑉 −  𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉 −  𝑅𝑅𝑇𝑇
𝑃𝑃

 =   𝑅𝑅𝑇𝑇
𝑃𝑃

(𝑍𝑍 − 1)  

Then, we said that we could write any the residual property for any extensive thermodynamic 

property. To write one for internal energy, for entropy, enthalpy, Helmholtz free energy, or Gibbs 

free energy and if that is represented as M, 

𝑀𝑀𝑅𝑅 ≡   𝑀𝑀 −  𝑀𝑀𝑖𝑖𝑖𝑖  
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And then we showed why � 𝐺𝐺
𝑅𝑅𝑅𝑅
� is considered the generating function or G is considered as the 

generating function, because if we have the value of G you could get other values. Please go 

through this derivation again it might be interesting here, if we have � 𝐺𝐺
𝑅𝑅𝑅𝑅
�  

𝑃𝑃
𝑅𝑅𝑅𝑅

 =  �
𝜕𝜕 ( 𝐺𝐺𝑅𝑅𝑅𝑅)

𝜕𝜕𝑃𝑃
�
𝑅𝑅
  

𝐻𝐻
𝑅𝑅𝑅𝑅

=  −𝑇𝑇 �
𝜕𝜕 ( 𝐺𝐺

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑅𝑅
�
𝑃𝑃
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Also  

𝑈𝑈
𝑅𝑅𝑅𝑅

=  𝐻𝐻
𝑅𝑅𝑅𝑅
−  𝑃𝑃𝑃𝑃

𝑅𝑅𝑅𝑅
  

𝑆𝑆
𝑅𝑅

=  𝐻𝐻
𝑅𝑅𝑇𝑇
−  𝐺𝐺

𝑅𝑅𝑇𝑇
  

We are not looking at A, because we may not need it extensively in this course but of course, you 

could write A too. It is not a problem. 
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Then  

𝑃𝑃𝑅𝑅

𝑅𝑅𝑅𝑅
=  �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑃𝑃
�
𝑅𝑅

  

𝐻𝐻𝑅𝑅

𝑅𝑅𝑅𝑅
 =  −𝑇𝑇 �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑅𝑅
�
𝑃𝑃
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And then we said that, we had assumed constant temperature but we got it in terms of values G 

R by R T is in terms of V R still V R by R T d P this is good but we wanted an easier way of 

estimating that. 
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Therefore, we wrote it in terms of Z.  

�𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  ∫ (𝑍𝑍 − 1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃

  

And we said that the value of Pref is usually taken as zero. 
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Then, we had expressions for the other thermodynamic residual properties in terms of measurable 

properties, this you have already seen. While deriving this we went through a situation, where 

we needed to differentiate an integral for doing that, we use the generalized Leibniz rule, which 

gave us a means to differentiate or partially differentiate a definite integral. 
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Here. So, after doing all that, we ended up with  

�𝐻𝐻
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅
�
𝑃𝑃

𝑃𝑃2
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃
𝑃𝑃
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Then, we also noted that although the state variable values will not change with the path chosen. 

The experiments that are designed, to evaluate these are path dependent, they need to be 



performed along path. Therefore, we need appropriate conditions, experimental conditions or 

appropriate mathematical expressions. 
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Then these are the other residual properties in terms of GR by RT and other things that we know. 

And in terms of the easily measurable values  

�𝑆𝑆
𝑅𝑅

𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅
�
𝑃𝑃

𝑃𝑃2
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃
𝑃𝑃
−  ∫ (𝑍𝑍 − 1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃
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We said that, this is quite obvious, once we have the residual value the actual value is nothing, 

but the residual value plus the ideal gas value. Therefore, if you have the ideal gas value, then 

you could find the actual value or for a process, when you are going between points or states 1 

and 2. M2 minus M1 or  

∆𝑀𝑀 =  ∆𝑀𝑀𝑅𝑅 +  ∆𝑀𝑀𝑖𝑖𝑖𝑖  

We also noted that the thermodynamics properties of state functions. Thus the experimental 

conditions employed say constant temperature are irrelevant to the actual values. The values 

depend only on the state and not on the path followed or the experimental conditions employed 

between the states. But also note that the values are with respect to a particular reference state 

and must be explicitly defined. 
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Then we came up with ways to get the ideal gas values, because we said the residual value plus 

the ideal gas values is actual value, we spent good amount of time getting the residual value first. 

And then we looked at how to get the ideal gas values without spending too much time here, we 

have derived all these. 
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This was the expression  

𝑑𝑑𝑑𝑑 =   𝐶𝐶𝑃𝑃𝑖𝑖𝑖𝑖
𝑑𝑑𝑅𝑅
𝑅𝑅
− 𝑅𝑅

𝑃𝑃
𝑑𝑑𝑃𝑃  



Therefore, by integrating that you could get the ideal gas value for S. For process values between 

point 1 and 2 the differences in values. 
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We first wrote them and then wrote them in terms of the easily measurable P V T. And a few 

other CP and So on. 
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Delta H was  

∆𝐻𝐻 =  ∫ 𝐶𝐶𝑃𝑃
𝑖𝑖𝑖𝑖𝑇𝑇2

𝑇𝑇1
 𝑑𝑑𝑇𝑇 +  𝐻𝐻2

𝑅𝑅 −  𝐻𝐻1
𝑅𝑅  



And delta S was  

∆𝑑𝑑 = ∫ 𝐶𝐶𝑃𝑃
𝑖𝑖𝑖𝑖𝑅𝑅2

𝑅𝑅1
𝑑𝑑𝑅𝑅
𝑅𝑅
−   𝑅𝑅 𝑙𝑙𝑙𝑙 𝑃𝑃2

𝑃𝑃1
+  𝑑𝑑2𝑅𝑅 −  𝑑𝑑1𝑅𝑅  
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We said that the above equations for the other thermodynamic properties can also be written in 

terms of the reduced properties, we had looked at not only two or three. And the reduced 

properties, when the reduced properties are used the equations become generalized, they become 

applicable to say all gases. Therefore, we need not look at specific P V T data to estimate 

thermodynamic properties. That was the advantage that we saw. 
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There are generalized correlations for residual properties also and the advantage is that, we just 

mentioned. We went ahead and derived those generalized correlations let me just present these 

generalized correlations these are the correlations in terms of the actual properties. 
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And we had substituted to get equations 3.47, 3.48 and 3.49 in terms of reduced properties.  

�𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  ∫ (𝑍𝑍 − 1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃

  



�𝐻𝐻
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅
�
𝑃𝑃

𝑃𝑃2
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃
𝑃𝑃

  

�𝑆𝑆
𝑅𝑅

𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅
�
𝑃𝑃

𝑃𝑃2
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃
𝑃𝑃
−  ∫ (𝑍𝑍 − 1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃

  

And the same way that we took, Pref is zero we also take Pr ref as zero for as a lower limit of 

integration. 
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We said that, we could write these equations in the generalized form. Also in terms of Z0 and Z1 

because then we can use the tables that are available to us and the explicit form as  

𝐻𝐻𝑅𝑅

𝑅𝑅 𝑅𝑅𝑐𝑐
=  (𝐻𝐻𝑅𝑅)0

𝑅𝑅 𝑅𝑅𝑐𝑐
+   𝜔𝜔 (𝐻𝐻𝑅𝑅)1

𝑅𝑅 𝑅𝑅𝑐𝑐
  

𝑆𝑆𝑅𝑅

𝑅𝑅
=  (𝑆𝑆𝑅𝑅)0

𝑅𝑅
+   𝜔𝜔 (𝑆𝑆𝑅𝑅)1

𝑅𝑅
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And the values are available the groups the 0 group and the 1 group, the values are available in 

tables E 5 to E 12 in appendix e of your text book. 
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Then we worked out an example to look at, how to use the correlation, the generalized correlation 

in terms of the reduced properties, to get at useful values. Please take a look at that whenever you 

have a time, the last thing that we saw was the estimation of the fugacity coefficient for a pure 

substance. 
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And to do that, we started out with the definition of the chemical potential for a species, we went 

into the interpretations of the chemical potential please take a look at it is very interesting I would 

not do it again now. And we went into writing the definition for a pure substance and writing 

down equations for a closed system in terms of the chemical potential for a pure substance. 

Then we went ahead with the derivation to get to this particular expression, which is the 

fundamental expression of phi 1.  

ln(∅1) =  ∫ � 𝑃𝑃
𝑅𝑅 𝑅𝑅

−  1
𝑃𝑃
�  𝑑𝑑𝑃𝑃𝑃𝑃1

0   

This is the fugacity coefficient, and in terms of the compressibility factor this can be written as  

ln(∅1) =  ∫ �𝜕𝜕 − 1
𝑃𝑃
�  𝑑𝑑𝑃𝑃𝑃𝑃1

0   

since we know so many ways to get at the Z value. We could use all those methods here to get 

also at the phi 1 value and then we worked out this example. This example was a slightly more 

complicated one in terms of needing slightly higher level skills of integration, which we saw. Not 

very difficult. But it needs a higher level skill from what was required to solve the previous set 

of problems. And we went through solving the problem to get at the fugacity co-efficient of 

isopropanol. 



So, that was all that we did in module 3. When we start the next class, we will start with module 

4 and look at solutions. So far, it was pure substance. Next, we mix pure substances together we 

get solutions and we look in properties of solutions. See you then. 

 


