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Lecture – 24 
Fugacity coefficient estimation 

 
Welcome!  

 

Today, we will look at the estimation of the fugacity coefficient using easy to measure variables. 

This will be the last aspect that we look at in this particular module on pure components.  
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We have already seen what a fugacity coefficient is; while going through this we will again take 

a look at what it is and then refresh ourselves, refresh our memories with what the fugacity 

coefficient is. Now, first to arrive at the experimental conditions needed to estimate the fugacity 

coefficient, we are going to begin with the definition itself.  The definition of the chemical 

potential, which we had given in the previous module.  If you remember, this was equation 2.16; 

we will mention this once again.  

�𝜕𝜕𝐺𝐺
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,  𝑃𝑃,  𝑛𝑛𝑗𝑗

≡   𝜇𝜇𝑖𝑖  



when we first introduced or when we first strengthened the idea of the chemical potential. 

This was equation 2.16, way back in the previous module. Again, to emphasize, this was only 

one of the ways that we used, to introduce the concept of chemical potential in the way we had 

organized our material. The chemical potential itself is a very powerful concept. And the 

interpretation of the concept of the chemical potential, and its applications are definitely not 

limited to the definition or the first level interpretation that one gets from this definition. 
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For example, by realizing that G T is the total free energy of the closed system, the chemical 

potential of a component of a phase can be interpreted also as the amount by which the capacity 

of the phase for doing work, other than expansion work, is increased per unit amount of the same 

species added, assuming an infinitesimal addition at the constant temperature and pressure.  This 

is, … this comes from whatever we have seen earlier:  

�𝜕𝜕𝐺𝐺
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,  𝑃𝑃,  𝑛𝑛𝑗𝑗

≡   𝜇𝜇𝑖𝑖  

Now we are looking at GT as the free energy, apart from … or the capacity to do work apart from 

P V work. 



And then we said that, this is the amount by which it increases when you infinitesimally add one 

of the species at constant temperature, pressure, and all other species remaining constant. That is 

one of the ways to interpret; it is good to know this.  

Let us look at it again from this background by realizing that GT is free energy, the chemical 

potential of a component of a phase can be interpreted as the amount by which the capacity of 

the phase for doing work, is increased or rather the work itself other than expansion work, is 

increased per unit amount of the same species added assuming an infinitesimal addition at a 

constant temperature and pressure. And of course, as we have already seen chemical potential is 

a valid concept for pure components also, although it was introduced using a multi component 

system. 
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Now, let us consider a pure component, which means there is no i involved anymore.  It is just 

one component there and therefore, variation in i need not be considered in the equations that we 

wrote earlier.  For such a pure substance,  

�𝜕𝜕𝐺𝐺
𝑇𝑇

𝜕𝜕𝑛𝑛
�
𝑇𝑇, 𝑃𝑃

=  𝜇𝜇  

 



Let us call this equation 3.51 a. And, you know, we need to be clear here that chemical potential 

is a function of temperature and pressure too.  Just that it is being held constant here, and we are 

defining it as the chemical potential. 
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We said we are considering only a pure component. Now, let us further restrict ourselves to one 

mole of that pure component. Please take … please pay some attention to this; this is where we 

are equating Gibbs free energy and chemical potential under these conditions. So, it is good to 

pay some attention to this. One mole of the pure substance for that GT which is the Gibbs free 

energy of the closed system, would become equal to the molar value G. And from the definition,  

�𝜕𝜕𝐺𝐺
𝑇𝑇

𝜕𝜕𝑛𝑛
�
𝑇𝑇, 𝑃𝑃

=  𝜇𝜇  

you can actually say that this is equal to mu under the conditions that we are considering. 

Now, using equation 2.8, which is for a closed system, we had written  

𝑑𝑑𝑑𝑑 = −𝑆𝑆 𝑑𝑑𝑑𝑑 +  𝑉𝑉 𝑑𝑑𝑑𝑑  

  

Using this, we can actually write this in terms of  𝜇𝜇.  Therefore,  



𝑑𝑑𝜇𝜇 = −𝑆𝑆 𝑑𝑑𝑑𝑑 +  𝑉𝑉 𝑑𝑑𝑑𝑑  

Let us call this equation 3.52. Under the above conditions,  

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃
�
𝑇𝑇

= 𝑉𝑉   

because see 𝑑𝑑𝜇𝜇 is a total differential.  This is again an exact differential of a state variable,  

𝑑𝑑𝜇𝜇 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑃𝑃
𝑑𝑑𝑑𝑑 + �𝜕𝜕𝜕𝜕

𝜕𝜕𝑃𝑃
�
𝑇𝑇
𝑑𝑑𝑑𝑑  

V is easily measurable. So, we will just look at that. 

Let us impose the conditions of constant temperature. Let us also remind ourselves that, we are 

trying to get at a means of estimating the fugacity coefficient. For that, we have started out with 

the chemical potential and we are getting there slowly. So, let us impose the conditions of 

constant temperature since it is … since we have a T constant here. Once we do that, pressure 

becomes the only independent variable.  We initially said we have constrained it to one mole of 

a pure substance already. And only variables that we can … we are concerned with now are the 

temperature and pressure. And now that we have also kept the temperature constant, pressure 

becomes the only variable. 

If you have a single variable system, you do not have to look at partial derivatives anymore.  They 

all become total derivatives because the variation is only with respect to one variable. And 

therefore, the partial derivatives can be replaced by the total derivative. Therefore, we can write  

𝑑𝑑𝜇𝜇 = 𝑉𝑉𝑑𝑑𝑑𝑑  

Equation 3.53. 
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Now, from the definition of fugacity, which is equation 3.1 b, earlier in this module; at constant 

temperature, we can write  

𝑑𝑑𝜇𝜇 = 𝑅𝑅 𝑑𝑑 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑓𝑓  

This comes directly from the definition of the fugacity itself. This is equation 3.54.  If you have 

some confusion, just go ahead and look back at equation 3.1 b; this will become very clear. Now, 

in this equation, we have  

𝑑𝑑𝜇𝜇 = 𝑉𝑉𝑑𝑑𝑑𝑑  

equation 3.53.  And in equation, 3.54 we have  

𝑑𝑑𝜇𝜇 = 𝑅𝑅 𝑑𝑑 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑓𝑓  

They are the same quantities on the left hand side. So, let us equate the right hand sides.  If we 

do that – equating the right hand sides of equations 3. 53 and 3.54, the previous two equations, 

we get  

𝑅𝑅 𝑑𝑑 𝑑𝑑 ln 𝑓𝑓 = 𝑉𝑉 𝑑𝑑𝑑𝑑  

Now, let us do some manipulations.  Note that we are getting to the fugacity coefficient. So, we 

will have to arrive at that in some way.  And, to do that, let us subtract R T d ln P … you know 



R T d ln P from both the sides of the above equation. Thinking of something like this: … we 

know that fugacity coefficient is f by P. So, somehow we need to get that into this kind of an 

expression. So, if we subtract R T d ln P from both sides of the above equation, we can write this 

as R T d ln  f minus R T d ln P.  Ln of a minus ln of b is ln of a by b. And therefore, we can write 

this is R T d ln f by P.  And the right hand side, of course, is V dP minus R T d ln P. Now, d ln P 

is nothing but 1 by P dP, and therefore, V dP minus R T it is already here, by P d P, which can 

… if you take dP out common, we can write V minus R T by P, d P. 

𝑅𝑅 𝑑𝑑 𝑑𝑑 ln 𝑓𝑓
𝑃𝑃

= 𝑉𝑉 𝑑𝑑𝑑𝑑 −  𝑅𝑅 𝑑𝑑 𝑑𝑑 𝑙𝑙𝑙𝑙 𝑑𝑑 =  �𝑉𝑉 −  𝑅𝑅 𝑑𝑑
𝑑𝑑
�  𝑑𝑑𝑑𝑑  
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Therefore,  

𝑑𝑑 ln 𝑓𝑓
𝑃𝑃

=  � 𝑉𝑉
𝑅𝑅 𝑑𝑑

−  1
𝑑𝑑
�  𝑑𝑑𝑑𝑑  

The need for writing this way will become very clear. We are trying to bring it in terms of 

compressibility factor; we know P V by R T is a compressibility factor. We will get to that in a 

little while.  Before that, let us integrate the above expression from P equals 0 to P equals some 

finite value P 1. And if we do that,   



ln �𝑓𝑓
𝑃𝑃
�
𝑃𝑃= 𝑃𝑃1

−  𝑙𝑙𝑙𝑙 �𝑓𝑓
𝑃𝑃
�
𝑃𝑃=0

=  ∫ � 𝑉𝑉
𝑅𝑅 𝑇𝑇

−  1
𝑃𝑃
�  𝑑𝑑𝑑𝑑𝑃𝑃1

0   
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Now, let us recall the definition of the fugacity … fugacity itself.  This is again from equation 

3.1 b. … If you look at the definition of fugacity, it will say that f tends to P as P tends to 0, or f 

by P tends to 1 as P tends to 0. And note that this is nothing but the evaluation of ln of f by P at 

… P going to 0, or P being equal to 0. In such a case, we have a ln 1 here, which is nothing but 

0. And therefore, the second term on the left hand side of the previous equation is 0.  And f by P 

is the fugacity coefficient at 0.1, in this case.  … Therefore, ln of P 1, or phi 1 you know here, we 

have evaluated f by P which is phi at P equals P 1 and therefore, we will call it ln of phi 1.  

ln(∅1) =  ∫ � 𝑉𝑉
𝑅𝑅 𝑇𝑇

−  1
𝑃𝑃
�  𝑑𝑑𝑑𝑑𝑃𝑃1

0   

Let us call this equation 3.55. We are almost there.  In terms of the compressibility factor … 

because we have so many methods for compressibility factor, now, let us try to expresses this 

also in terms of the compressibility factor. We know that P V by R T is a compressibility factor. 

We can write  

ln(∅1) =  ∫ �𝑍𝑍 − 1
𝑃𝑃
�  𝑑𝑑𝑑𝑑𝑃𝑃1

0   



Let us call this equation 3.56. 

Let us take a look at this equation, ln of phi 1 equals integral of 0 to P 1 Z minus 1 by P, d P. We 

have on the right hand side all that can be evaluated. We already know methods for evaluating 

the compressibility factor starting right from the initial part of this module. And therefore, by 

evaluating this, we can get an estimate of the fugacity coefficient, at a particular point. In this 

case one denotes the particular point at which the estimation is made. The methods used to 

evaluate compressibility factors under appropriate conditions can be used to evaluate the fugacity 

coefficient. So, whatever information that we have gathered so far, in terms of evaluating Z, 

estimating Z, can directly be ported on here, to evaluate the fugacity coefficient. 
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To appreciate this a lot better, let us work out an example.  This is example 3.5.  Let me first, 

read out the example.  Evaluate the fugacity coefficient for our, you know popular modal 

system, isopropanol, under the conditions given in example 3.4. The same temperature, the 

same pressure … I think it is 200 degrees C and 10 bar, which is given in 3.4. What I would 

like to tell you first is that this problem is not trivial, although it is just one line there: evaluate 

the fugacity coefficient for isopropanol. That is because, on the basis of whatever we have seen 

so far, whatever we have learnt so far, the skills that are required to arrive at an acceptable 

solution to this problem calls for our slightly higher level skills; it requires some integration 

also. 



So, what I will do is give you a lot of time to do this. Take about 5 minutes to think about this 

and the first hint is very clear.  You will need to use the expression for the fugacity coefficient 

of course, but may not be very directly. So, take about 5 minutes think about this and then I will 

give you some hints and lead you through the solution process. This is this is not as straight 

forward as the solutions that we have seen so far. Go ahead please – 5 minutes.  
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Now, that you have, taken the time to think through this. … We would have connected some 

expressions for the fugacity coefficient, the one that we just saw, ln of phi 1 equals  0 to P 1, Z 

minus 1 by P, dP and so on. Maybe we will have to use that, but I already warned you – not very 

directly. So, let me start giving you some hints. 
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The first hint is, try to express that equation 3.56 that we just saw, the expression for ln of phi 1, 

in terms of reduce properties, you know TR, PR, and so on. Because, if you do that, then the data, 

the amount of data that is needed significantly goes down. Because, in terms of reduced variables, 

those are applicable for a wide variety of substances, pure substances. Therefore, try to express 

this in terms of reduced properties. Go ahead, take about ten minutes and try to express the 

equation in terms of reduced properties and then I will give you the second hint. 

Probably you are ready for the second hint now. We will see the solution when we work out the 

complete details, but let me give you a hint so that you can start thinking in that direction and 

pick up such skills, which require thinking in one angle and thinking in another angle, putting 

them together for the purpose at hand. The hint is something like this; we have tables for reduced 

properties in the appendices. Express the equation for the fugacity coefficient in terms of those 

reduced properties. This is a very big hint. So, go ahead ten minutes, and see how you can express 

the equation for that fugacity coefficient, which is already been converted to a reduced property 

form, in terms of these reduced properties the values of which are available in the appendices.  

Let me probably give you a third hint now, it might help you. Those reduced properties are  

��𝑆𝑆
𝑅𝑅�

0

𝑅𝑅
 ,   �𝑆𝑆

𝑅𝑅�
1

𝑅𝑅
�  ,   ��𝐻𝐻

𝑅𝑅�
0

𝑅𝑅 𝑇𝑇𝑐𝑐
 ,   �𝐻𝐻

𝑅𝑅�
1

𝑅𝑅 𝑇𝑇𝑐𝑐
�  

We have already seen that these are available in the tables of your appendix. So, take about 15 

minutes and link this up, you know, in terms of the expression for the fugacity coefficient, in 



terms of these reduced properties to these reduced properties. Take 15 minutes to do it. Go ahead 

please. 
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Some of you would have arrived with the solution which is very good. Let us look at the way of 

going about the solution. We have already seen from equation 3.56, the first step was to express 

this in terms of reduced properties. We have we already known that, 

ln(∅1) =  ∫ �𝑍𝑍 − 1
𝑃𝑃
�  𝑑𝑑𝑑𝑑𝑃𝑃1

0   

Now, the way to express this in terms of reduced properties is to replace these actual variables in 

terms of the reduced variables. We now that P is Pc Pr and dP as we already seen is Pc, which is 

a constant, times dPr. I have written down the steps here Pc Pr and d of PcPr.  And the Pc, when 

it comes out common here it will get cancelled with this. And now, since Pc is a constant and the 

variable of integration is Pr, the limit of integration should also be in terms of Pr. This, that makes 

sense because, you have this in terms of dPr. We do that and  

ln(∅1)  =  ∫ �𝑍𝑍 − 1
𝑃𝑃
�  𝑑𝑑𝑑𝑑𝑃𝑃1

0 =  ∫ �𝑍𝑍 − 1
𝑃𝑃𝑐𝑐𝑃𝑃𝑟𝑟

�  𝑑𝑑(𝑑𝑑𝑐𝑐𝑑𝑑𝑟𝑟)𝑃𝑃𝑐𝑐𝑃𝑃𝑟𝑟1
0   

ln(∅1)  =  ∫ �𝑍𝑍 − 1
𝑃𝑃𝑟𝑟
�  𝑑𝑑(𝑑𝑑𝑟𝑟)𝑃𝑃𝑟𝑟1

0   



It is quite straight forward and no major complications in converting this expression from the 

actual quantities to reduced variables. 
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Now, by transposing equation 3.49 below, you have think of the second hint that was given. Try 

to express it in terms of the other reduced properties SR and HR and so on. The 3.49 equation is 

given here for a quick reference. 3.49 was  

𝑆𝑆𝑅𝑅

𝑅𝑅
=   − 𝑑𝑑𝑟𝑟 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑇𝑇𝑟𝑟
�
𝑃𝑃𝑟𝑟

𝑃𝑃𝑟𝑟2
𝑃𝑃𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃𝑟𝑟
𝑃𝑃𝑟𝑟

 −   ∫ (𝑍𝑍 − 1)𝑃𝑃𝑟𝑟2
𝑃𝑃𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃𝑟𝑟
𝑃𝑃𝑟𝑟

  

And this can be written as,  

∫ �𝑍𝑍 − 1
𝑃𝑃𝑟𝑟
�  𝑑𝑑(𝑑𝑑𝑟𝑟)𝑃𝑃𝑟𝑟1

0 =  𝑆𝑆
𝑅𝑅

𝑅𝑅
 +  𝑑𝑑𝑟𝑟 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑇𝑇𝑟𝑟
�
𝑃𝑃𝑟𝑟

𝑃𝑃𝑟𝑟2
𝑃𝑃0

𝑑𝑑𝑃𝑃𝑟𝑟
𝑃𝑃𝑟𝑟

  

This was actually our fugacity coefficient expression, that we had gotten earlier … in terms of 

reduced quantities. So, we have this in terms of SR and something else here. Now if you can take 

care of this then, we have a means of calculating our fugacity coefficient. Now, what is this? To 

get at this, let us look at 3.48, which has again being given here for convenience. If you recall 

3.48 … you can go back and take a look at that, that will be 

 



𝐻𝐻𝑅𝑅

𝑅𝑅𝑇𝑇𝑐𝑐
=  − 𝑑𝑑𝑟𝑟2 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑇𝑇𝑟𝑟
�
𝑃𝑃𝑟𝑟

𝑃𝑃𝑟𝑟2
𝑃𝑃𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑃𝑃𝑟𝑟
𝑃𝑃𝑟𝑟

  

Therefore, this integral here which is somewhat this here can be written as minus, you know, here 

take a look at this here … this is Tr squared here you have a Tr and therefore, minus one by T r 

into H R by R T c becomes this integral that we are looking for. And therefore, the fugacity 

coefficient estimation,  

∫ �𝑍𝑍 − 1
𝑃𝑃𝑟𝑟
�  𝑑𝑑(𝑑𝑑𝑟𝑟)𝑃𝑃𝑟𝑟1

0 =  𝑆𝑆
𝑅𝑅

𝑅𝑅
−  1

𝑇𝑇𝑟𝑟
 �𝐻𝐻

𝑅𝑅

𝑅𝑅𝑇𝑇𝑐𝑐
�  
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Now, the RHS can be written as, … this is where the link between what is available to us … we 

have values available in terms of SR0, SR1, HR0, HR1. Therefore, we need to relate whatever we 

have in terms of SR and HR  

=  ��𝑆𝑆
𝑅𝑅�

0

𝑅𝑅
  +   𝜔𝜔 �𝑆𝑆

𝑅𝑅�
1

𝑅𝑅
�  −  1

𝑇𝑇𝑟𝑟
 ��𝐻𝐻

𝑅𝑅�
0

𝑅𝑅 𝑇𝑇𝑐𝑐
 +  𝜔𝜔 �𝐻𝐻

𝑅𝑅�
1

𝑅𝑅 𝑇𝑇𝑐𝑐
�  

Now, we can take these values from the tables available in the appendix. These are appendices 

or tables E 5, E 6, E 9 and E 10 of appendix E from your text book, Smith VanNess and Abbot. 



This is pretty much similar to what we did in example 3.4. Substituting these values, we get SR0 

by R as 0.179, and so on.  Omega is 0.665, SR1 by R was minus 0.254; we have already seen this 

in the previous example. And … minus 1 by Tr is minus 1 by 0.931.  This term, HR0 by RTc was 

minus 0.2466 plus omega times HR1 by RTc, minus 0.265; this turns out to be 0.1053.  

= �−0.179 + 0.665 (−0.254)� −  1
0.931

�−0.246 + 0.665 (−0.265)�  

= 0.1053  

What was on the left hand side was ln of phi 1 and therefore, phi 1, which is a fugacity coefficient 

at 1 is  

∅1 = exp(0.1053) = 1.111  

So, we have kind of integrated, whatever we knew in terms of, whatever was available and got 

an estimate of the fugacity coefficient.  If you want you can go through this solution again to see 

the various ways and which we went about doing it. In the next class, we will do a review of 

whatever we have done in this module, before we go on to the next module.  See you then. 

 


