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Welcome!   

In the last class, we ended when we were looking at G by R T. And we were looking at getting 

the other four functions. Remember, there were five other thermodynamic functions, which are 

not so easy to measure. We are trying to express that in terms of P, V and T.  They are U, S, H, 

A, and G, and we started looking at G by R T. The reason for that will become apparent in a little 

while later either in this class itself or the next class. 
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We started considering G by R T, and then from G by R T, we got the other four U, S, H, and A. 

Let us go through it once again for completeness. … We saw that by considering G by R T as a 

function of pressure and temperature alone, we could get  
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 =  �
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�
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and  

𝐻𝐻
𝑅𝑅𝑅𝑅

=  −𝑇𝑇 �
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And so, we are done with V, H …  V is an additional, thing here. 
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And, we also found that from the original definitions, we could write  

𝑈𝑈
𝑅𝑅𝑅𝑅

=  𝐻𝐻
𝑅𝑅𝑅𝑅
−  𝜕𝜕𝑉𝑉

𝑅𝑅𝑅𝑅
  

𝑆𝑆
𝑅𝑅

=  𝐻𝐻
𝑅𝑅𝑇𝑇
−  𝐺𝐺

𝑅𝑅𝑇𝑇
  

If you look at it, we have V by R T here, H by R T here, and U by R T as well as S by R. Therefore, 

we have a complete set of thermodynamic variables. If you know, G by R T, and … for that 

reason this G is known as the regenerating function; the Gibbs free energy is known as a 

generating function. We use it in the form of G by R T here. 
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Let us continue and get back to right proper residual properties now.  Let us consider equation 

3.27. I am going to represent it here again. We do not have to go back. Now,  

𝑑𝑑 � 𝐺𝐺
𝑅𝑅𝑅𝑅
� =   𝑉𝑉

𝑅𝑅𝑇𝑇
 𝑑𝑑𝑑𝑑 −  𝐻𝐻

𝑅𝑅𝑇𝑇2  𝑑𝑑𝑇𝑇  

 

This was equation 3.27. If we write this for an ideal gas, then this becomes  

𝑑𝑑 �𝐺𝐺
𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅
� =   𝑉𝑉

𝑖𝑖𝑖𝑖

𝑅𝑅𝑇𝑇
 𝑑𝑑𝑑𝑑 −  𝐻𝐻

𝑖𝑖𝑖𝑖

𝑅𝑅𝑇𝑇2  𝑑𝑑𝑇𝑇  

Let us call this equation 3.32. To be in line 3.27 came a little earlier. Equation 3.32 is the next 

number in sequence. Now, if we subtract 3.32 from 3.27 – note this is the actual value, this is the 

ideal value, and therefore, actual value minus the ideal value must give us the residual value. 

𝑑𝑑 �𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
�  =   

𝑉𝑉𝑅𝑅

𝑅𝑅𝑇𝑇
 𝑑𝑑𝑑𝑑 −  

𝐻𝐻𝑅𝑅

𝑅𝑅𝑇𝑇2  𝑑𝑑𝑇𝑇  

Let us call this equation 3.33. Earlier, we considered G or rather, G by R T as a function of P and 

T and derived the other thermodynamic functions. 
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Now, let us consider  

𝐺𝐺𝑅𝑅

𝑅𝑅𝑅𝑅
    as a f(P, T) 

and let us write the corresponding terms. What I would like you to do is take … may be about 5 

minutes and do this exercise. Consider … 𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
    as a f(P, T).  Consider the total derivative in terms 

of the partial derivatives and therefore, write the functionalities of the partial derivatives in terms 

of the thermodynamic variables that we need. Thus, establish that you could use G R by R T to 

generate the other thermodynamic functions. Go ahead. May be you want to take about 10 

minutes. Since, we are looking at this for the first time, take about 10 minutes and do it. Go ahead 

please.  
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Let us continue. This was in the same vein as earlier for G by R T. You know instead of the actual 

values, we have the residual values here. Therefore, the same argument holds. See whether you 

got this. If you did not get this go back again and look at how we obtain the relationships for the 

actual values. 

𝑉𝑉𝑅𝑅

𝑅𝑅𝑅𝑅
=  �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝜕𝜕
�
𝑅𝑅

  

Let us call this equation 3.34. And  

𝐻𝐻𝑅𝑅

𝑅𝑅𝑅𝑅
 =  −𝑇𝑇 �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑅𝑅
�
𝜕𝜕

  

Essentially this comes from just expressing the total derivative in terms of the partial derivatives 

for an exact differential and writing the partial derivatives as equivalent to the thermodynamic 

functions. The last equation let us call that as equation 3.35. 
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Now, when an experiment or a process takes the system, lets say from state 1 to state 2 and let us 

say that this is performed under constant temperature. We are imposing the condition of constant 

temperature for this process. In such a case, we can use the equation 3.34, which is essentially an 

equation where the partial derivative is taken and the temperature is held constant. Let us take 

look at that 3.34 here,  

𝑉𝑉𝑅𝑅

𝑅𝑅𝑅𝑅
=  �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝜕𝜕
�
𝑅𝑅

  

 

Therefore, if we perform an experiment under constant temperature conditions you can use this 

equation directly to get this from this. And we can use that to calculate the residual Gibbs free 

energy from the P V T data. Let us take a look at that right now.  

𝑑𝑑 �𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  𝑉𝑉

𝑅𝑅

𝑅𝑅𝑇𝑇
 𝑑𝑑𝑑𝑑  

at constant temperature. The other derivative at constant temperature goes away because that goes 

to 0 rather the d T terms goes to 0. And therefore, the other term drops out. Under these 

conditions, integration of this equation gives  

�𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  ∫ 𝑉𝑉𝑅𝑅

𝑅𝑅𝑅𝑅
 𝑑𝑑𝑑𝑑𝜕𝜕2

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
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From an earlier equation 3.24, we know that V R it is essentially the residual property of V, the 

molar volume. The actual volume minus ideal gas volume, which we said was equal to V minus 

R T by P, because ideal gas molar volume is R T by P, which when expressed in terms of the 

compressibility factor becomes R T by P Z minus 1. This we saw in equation 3.24 itself.  

𝑉𝑉𝑅𝑅 ≡   𝑉𝑉 −  𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉 −  𝑅𝑅𝑇𝑇
𝑑𝑑

=   𝑅𝑅𝑇𝑇
𝑑𝑑

(𝑍𝑍 − 1)  

If we substitute this in the previous equation for V R we get  

�𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  ∫ (𝑍𝑍 − 1)𝜕𝜕2

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝜕𝜕
𝜕𝜕

  

We will call that equation 3.36. 

And the value of P reference is usually taken to be 0, which is fine. And if that is a case then you 

can design suitable experiments to obtain the terms on the right hand side of this equation 3.36, 

which can in turn be used to calculate G R by R T the residual Gibbs free energy. And from the 

earlier equations, we can relate the Gibbs free energy, the generating function, to get the other 

thermodynamic variables U R, S R, H R and A R; and from the residuals you can get the actual 

quantities. 
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Some other residual properties can be obtained as follows.  … I am going to explain whatever I 

said in brief earlier. Equation 3.35 directly gives an expression for H R, the residual enthalpy.  

𝐻𝐻𝑅𝑅

𝑅𝑅𝑅𝑅
 =  −𝑇𝑇 �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑅𝑅
�
𝜕𝜕

  

Therefore, once we know G R by R T we can get H R by R T from this expression. G R by R T, 

we have already seen, is  

�𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  ∫ (𝑍𝑍 − 1)𝜕𝜕2

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝜕𝜕
𝜕𝜕

  

If we substitute equation 3.36 for G R by R T into equation 3.35 to get H R by R T, we get it into 

this situation.  

 �
𝜕𝜕 (𝐺𝐺

𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑅𝑅
�
𝜕𝜕

=  �
𝜕𝜕�∫ (𝑍𝑍−1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃 �

𝜕𝜕𝑅𝑅
�
𝜕𝜕

  

I would like you to ponder over the right hand idea of this. Have you seen such expressions 

earlier? What is so special about that take a couple of minutes to, you know, ponder about, and 

then I will come back and tell you how to handle this. 

Hopefully, you would have seen that it is a derivative, a partial derivative, of an integral. 
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… That’s we have here. How do you do that?  There is something called a Leibniz rule, which 

you would have encountered in your first or second course in mathematics in your first year, 

which allows us to differentiate an integral.  Nevertheless, that Leibniz rule would have been 

written for a total derivative, and what we have here is a partial derivative. 

If it had been the total derivative whatever you had learnt from the first year course would have 

sufficed to do this. You might forgotten that … you might want to go back and verify how to do 

a differentiation of an integral. But that does not matter.  Here, you have a partial derivative and 

therefore, you need to consider it further, and there is something called generalized Leibniz rule. 

And what it says is that you can look through this and probably some specialized books in 

mathematics. What it says is that the partial derivative can be handled in a similar fashion to the 

total derivative according to the generalized Leibniz rule. 

Therefore, whatever you did for the total derivative of an integral can be done for the partial 

derivative of the integral too, is what this says. Therefore, dou dou T of integral P reference to P 

2, Z minus 1 by P d P at constant pressure can be written as … you know … recall the Leibniz 

rule. This was integral between the same two limits. You take the derivative inside the integral 

dou dou T of Z minus 1 by P at constant P d P. This is the first term, plus the function evaluated 

at the upper limit times the derivative of the upper limit with respect to d T which is the function 

here with which it is differentiated. 



Therefore, d d T of P 2 minus the value of the function evaluated at the lower limit times the 

derivative with respect to T with respect to this variable of the lower limit which is P reference.  

�
𝜕𝜕�∫ (𝑍𝑍−1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃 �

𝜕𝜕𝑅𝑅
�
𝜕𝜕

=  ∫ � 𝜕𝜕
𝜕𝜕𝑇𝑇

(𝑍𝑍−1)
𝑑𝑑
�
𝑑𝑑

𝑑𝑑2
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑 +   �(𝑍𝑍−1)
𝑑𝑑
�
𝑑𝑑2

𝑑𝑑𝑑𝑑2

𝑑𝑑𝑇𝑇
−   �(𝑍𝑍−1)

𝑑𝑑
�
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑇𝑇

  

This is exactly the same form that you would have learnt in your earlier mathematics class. 

Now, take a look at this. This is fine; we will come back to this a little later. This is d d T of P 2; 

P 2 is a particular pressure value.  Similarly, P reference is a particular pressure value. In this 

case it happens to be 0. Therefore, we are actually doing the differentiation of a constant. 

Therefore; these two terms go to 0. And therefore, these two, the second and third terms on the 

right hand side are actually 0. 
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Therefore, if you take the derivative here at constant P, that reduces to this. Please verify this. I 

am not going to give you extra time here but you can go back after the class and verify this;  

�
𝜕𝜕�∫ (𝑍𝑍−1)𝑃𝑃2

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑃𝑃
𝑃𝑃 �

𝜕𝜕𝑅𝑅
�
𝜕𝜕

=    ∫ 1
𝑑𝑑

  �𝜕𝜕𝑍𝑍
𝜕𝜕𝑇𝑇
�
𝑑𝑑

𝑑𝑑2
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑  



Therefore, H R by R T, which is what we started looking at, and we went in to all this Leibniz 

rule business because we wanted to differentiate an integral to get H R by R T from G R by R T. 

And this is, as we know, from the expression earlier minus T dou dou T of G R by R T at constant 

P. And, if we substitute this we would get minus T from here times P reference to P 2, 1 by P dou 

Z dou T at constant P times d P. Therefore,  

𝐻𝐻𝑅𝑅

𝑅𝑅𝑅𝑅
 =  −𝑇𝑇 �

𝜕𝜕 (𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅)

𝜕𝜕𝑅𝑅
�
𝜕𝜕

=  − 𝑇𝑇 �∫ 1
𝜕𝜕

  �𝜕𝜕𝑍𝑍
𝜕𝜕𝑅𝑅
�
𝜕𝜕

𝜕𝜕2
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑�  

�𝐻𝐻
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑅𝑅
�
𝜕𝜕

𝜕𝜕2
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝜕𝜕
𝜕𝜕

  

So, we have gotten H R by T, or H R in terms of easily measurable properties. Let us call this 

equation 3.37. 
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Now, the term inside the integral here dou Z dou T is actually evaluated at constant pressure. But, 

we began by considering experiments it constant temperature. But the second term went off when 

we considered the process at constant temperature. Therefore, d T went to 0, and so on. 

We began by considering experiments at constant temperature but this is still valid, you know, 

by using one of her usual arguments. The state … although the state variables will not change 

along the … will not change with the path chosen, the experiments need to be performed along a 



path. Experiments are based in reality, and therefore, are path-dependent.  Therefore, to ensure 

the validity of the equation, … the data needs to be obtained from a different experiment, or from 

an appropriate mathematical expression. 

So, the dou Z dou T at constant P data needs to be obtained from a different set of experiment 

not the same constant temperature experiment; that will not be valid here. … I think, I should 

mention this again. This is a slightly different way of presenting the same basic argument.  

Here, we are in the realm of experiments which are grounded in reality. We are looking at ways 

to get dou Z dou T at constant P.  Whereas, we started the derivation by looking at a constant 

temperature process. And since, the experiments are path-dependent, we need to obtain dou Z 

dou T at constant P from a different set of experiments, where the P is held constant. 
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Now, you seeing equation 3.31 for residual properties, we can get the other variables  

�𝑆𝑆
𝑅𝑅

𝑅𝑅
� =  �𝐻𝐻

𝑅𝑅

𝑅𝑅𝑇𝑇
� −  �𝐺𝐺

𝑅𝑅

𝑅𝑅𝑇𝑇
�  

This we have already seen earlier. And we have an expression for H R by R T, which we just 

derived by going through the differentiation of integral, and so on. We also have an expression 

for G R by R T in terms of the measurable properties. Therefore, if we substitute both of them 

here, we have 



�𝑆𝑆
𝑅𝑅

𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑅𝑅
�
𝜕𝜕

𝜕𝜕2
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝜕𝜕
𝜕𝜕
−  ∫ (𝑍𝑍 − 1)𝜕𝜕2

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝜕𝜕
𝜕𝜕

  

Therefore, we have S R in terms of T, P, Z, and so on.  We will call this equation 3.39. 
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Now, we have residual properties starting with G R by R T, and hopefully, we would have 

generated the other residual properties. And we know that the actual property minus the ideal gas 

ideal property or ideal gas property is the residual property. And therefore, if you have 

expressions for the ideal gas values, then we can get the actual values from the residual values. 

Therefore, let us see the obvious thing; the actual property is nothing but the residual property 

plus the ideal gas property.  

𝑀𝑀 =  𝑀𝑀𝑅𝑅 +  𝑀𝑀𝑖𝑖𝑖𝑖  

Or for a process, you know, between states 1 and 2  

∆𝑀𝑀 =  ∆𝑀𝑀𝑅𝑅 +  ∆𝑀𝑀𝑖𝑖𝑖𝑖  

Note that the thermodynamic properties are state functions.  This is repeating the earlier 

argument, but in the context of this process.   



Thus the experimental conditions employed, say constant temperature are irrelevant to the actual 

process. Actual values … the values depend on only on the state and not the path followed. For 

example, the experimental conditions employed between the states. But also note that the values 

are with respect to a particular reference state which must be explicitly defined. That we know 

right from the beginning, but it is good to remind ourselves from time to time so that we do not 

forget it when we actually need to use it. 
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So, let us look at the second part now, we had the residual properties evaluation in terms of P, V, 

T, Z, and so on. Now, let us look at how to get the ideal gas values in terms of the easily 

measurable quantities. The ideal gas values can be evaluated as follows: Equation 2.48 gave us  

𝑑𝑑𝐻𝐻 =   𝐶𝐶𝑑𝑑𝑑𝑑𝑇𝑇 +  �𝑉𝑉 −  𝑇𝑇 �𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇
�
𝑑𝑑
�  𝑑𝑑𝑑𝑑  

This we have already seen.  

Now, since we are looking at ideal gas, we can use the relationship P V equals R T. Therefore,  

�𝜕𝜕𝑉𝑉
𝜕𝜕𝑅𝑅
�
𝜕𝜕

=  𝑅𝑅
𝜕𝜕
  



You can see how to go about doing it at constant pressure you can take pressure out constant, and 

dou V dou T at constant pressure would turn out to be R by P, directly from this equation.  Let 

us call that equation 3.40. 

Now, the second term on the right hand side of 2.48 will go to 0 for an ideal gas. Therefore, d H 

ideal gas is C P ideal gas d T alone. You do not have this for an ideal gas. Why?  Because, you 

know, you have this V minus T and you substitute R by P here you get T R by P. And T R by P 

is nothing but V.  V minus V goes to 0.  Therefore, you end up with  

𝑑𝑑𝐻𝐻𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑑𝑑𝑖𝑖𝑖𝑖 𝑑𝑑𝑇𝑇  

equation 3.41. 
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And equation 2.50 from the earlier module – it gives us  

𝑑𝑑𝑑𝑑 =  𝐶𝐶𝜕𝜕
𝑑𝑑𝑅𝑅
𝑅𝑅
− �𝜕𝜕𝑉𝑉

𝜕𝜕𝑇𝑇
�
𝑑𝑑
𝑑𝑑𝑑𝑑  

You can go back and check if you want; this is essentially what 2.50 give us.  And substituting 

equation 3.40 in 2.50 in terms of dou V dou T at constant P, and so on, we get  

𝑑𝑑𝑑𝑑 =   𝐶𝐶𝜕𝜕𝑖𝑖𝑖𝑖
𝑑𝑑𝑅𝑅
𝑅𝑅
− 𝑅𝑅

𝑑𝑑
𝑑𝑑𝑑𝑑  



We will call that equation 3.42. And therefore, we have, d S for an ideal gas in terms of easily 

measurable quantities. 
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Now, let us look at some process values between point 1 to point 2 that the system takes during 

a process.  

𝐻𝐻2 =  𝐻𝐻2𝑖𝑖𝑖𝑖 +   𝐻𝐻2𝑅𝑅  =  �∫ 𝐶𝐶𝜕𝜕
𝑖𝑖𝑖𝑖𝑅𝑅2

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟
 𝑑𝑑𝑇𝑇�+𝐻𝐻2𝑅𝑅  

We will call that equation 3.43.  And H1, similarly, can be written as  

𝐻𝐻1 =  �∫ 𝐶𝐶𝜕𝜕
𝑖𝑖𝑖𝑖𝑅𝑅1

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟
 𝑑𝑑𝑇𝑇� +  𝐻𝐻1𝑅𝑅  

You know where we are going … we are going to take the difference now between 3.43 and 3.44. 
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ΔH = H2 – H1 

can be written as  

∆𝐻𝐻 =  ∫ 𝐶𝐶𝑑𝑑
𝑖𝑖𝑖𝑖𝑇𝑇2

𝑇𝑇1
 𝑑𝑑𝑇𝑇 +  𝐻𝐻2

𝑅𝑅 −  𝐻𝐻1
𝑅𝑅  

Note one was from T reference to T 2 the other one was from T reference to T 1. Subtract the 

two –  effectively subtracting the areas.  Therefore, the limits change for T 1 to T 2 plus, of course, 

H 2 R minus H 1 R. Let us call that equation 3.45. 

Similarly, using 3.42 that we have shown earlier,  

𝑑𝑑𝑑𝑑 =   𝐶𝐶𝜕𝜕𝑖𝑖𝑖𝑖
𝑑𝑑𝑅𝑅
𝑅𝑅
− 𝑅𝑅

𝑑𝑑
𝑑𝑑𝑑𝑑  

Therefore, for a process,  

∆𝑑𝑑 = ∫ 𝐶𝐶𝜕𝜕
𝑖𝑖𝑖𝑖𝑅𝑅2

𝑅𝑅1
𝑑𝑑𝑅𝑅
𝑅𝑅
−   𝑅𝑅 𝑙𝑙𝑙𝑙 𝜕𝜕2

𝜕𝜕1
+  𝑑𝑑2𝑅𝑅 −  𝑑𝑑1𝑅𝑅  

Let us call this equation 3.46. 
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The above equations for the thermodynamic properties U, S, H, A, G or V can be written in terms 

of reduced properties also. And therefore, the number of measurements or the number of data 

points that you need from existing values becomes much less … becomes much easier to evaluate.  

And, as mentioned earlier, when generalized properties are used the equations become 

generalized. In other words, applicable to all gases.  And, one therefore, does not need the P V T 

data for specific pure substances to estimate the thermodynamic properties. 

So, essentially what we have done so far is to look at generating the not so easy to measure 

thermodynamic variables U, S, H, A and G from measurable … easily measurable quantities. But 

we focused on G begin with.  We got G in terms of … in terms of the easily measurable properties. 

Then, we got everything else.  To that we had used the residual properties formulation.  Then, we 

said that we are going to look at things in terms of reduced properties. And in such a case, you 

do not need specific P V T data.  The correlations that are given would be applicable to almost 

all gases, in general, with a few exceptions. 
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And so, let us look at those generalized correlations to the extent possible today. From the 

definition of the reduced properties, we can of course, write … you know … P R, if you recall, 

is nothing but the ratio of P to P c, and therefore,  

𝑑𝑑 =  𝑑𝑑𝑐𝑐𝑑𝑑𝑟𝑟  

Therefore, d P is … P c is a constant … so P c times d P r.  

𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑐𝑐  𝑑𝑑𝑑𝑑𝑟𝑟  

Similarly, T is  

𝑇𝑇 =  𝑇𝑇𝑐𝑐𝑇𝑇𝑟𝑟  

Therefore,  

𝑑𝑑𝑇𝑇 =  𝑇𝑇𝑐𝑐  𝑑𝑑𝑇𝑇𝑟𝑟  

Now, if you substitute the above in the following equations … these were the equations that we 

have obtained earlier  

�𝐺𝐺
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  ∫ (𝑍𝑍 − 1)𝜕𝜕2

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝜕𝜕
𝜕𝜕

  

This was equation 3.36 earlier.  



�𝐻𝐻
𝑅𝑅

𝑅𝑅𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑅𝑅
�
𝜕𝜕

𝜕𝜕2
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝜕𝜕
𝜕𝜕

  

This was equation 3.37. 

�𝑆𝑆
𝑅𝑅

𝑅𝑅
� =  − 𝑇𝑇 ∫ �𝜕𝜕𝑍𝑍

𝜕𝜕𝑅𝑅
�
𝜕𝜕

𝜕𝜕2
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝜕𝜕
𝜕𝜕
−  ∫ (𝑍𝑍 − 1)𝜕𝜕2

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝜕𝜕
𝜕𝜕

  

equation 3.39.  

Why don’t you go ahead and substitute in the remaining time? Why don’t you substitute P c P r 

wherever P occurs, T c T r wherever T occurs, and see what expressions you get in terms of the 

reduced quantities. Go ahead please. We will take it off from here, continue from here, when we 

meet next. 

See you in the next class. 


