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Welcome! 

To see this in the context of whatever we have already seen, we have already seen ideal gas law 

which is applicable only to ideal gases, very few gases. Virial equations which is applicable to a 

wider variety of gases, and the cubic equations  - the VanderWaals and the Redlich-Kwong are 

the examples of cubic equations of state that we saw. These are applicable to a gas or a liquid 

state of a pure substance. 

Now, we are going to see a formulation that is applicable to almost all gases. Baring a very few, 

these generalized correlations are applicable to almost all gases, and that is our interest in such a 

formulation. These generalized correlations are usually written in terms of what are called 

reduced properties. Reduced property is nothing but, you take a value let us say if you are talking 

of reduced temperature you take the actual temperature. Take the ratio of the actual temperature 

to the critical temperature of that pure substance.  Then you get reduced temperature. As we go 

along the generality of this particular use will become very apparent. 
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But, let us start with the definitions themselves. Reduced pressure is nothing but … which is 

represented as P r, is defined as the actual pressure to the critical pressure.  

𝑃𝑃𝑟𝑟 ≡   𝑃𝑃
𝑃𝑃𝑐𝑐

  

Reduced temperature we already saw; T r is defined as the actual temperature to the critical 

temperature,  

𝑇𝑇𝑟𝑟 ≡   𝑇𝑇
𝑇𝑇𝑐𝑐

  

and reduced molar volume which is represented as V r is defined as V which is the actual molar 

volume divided by the critical molar volume 

𝑉𝑉𝑟𝑟 ≡   𝑉𝑉
𝑉𝑉𝑐𝑐

  

Usually, we start out with one of these equations; in this case we will start with the Redlich-

Kwong equation of state and write it in a generalized form. To do that, what we will do is multiply 

both sides of equation 3.7. You can go back and check; equation 3.7 is nothing but, the Redlich-

Kwong equation of state. If you multiply that by, V by R T you will get … in fact, I would like 

you to do this right now, let me first present the equation … Z the compressibility factor is 



𝑍𝑍 = 1
1−ℎ

 −  𝑎𝑎
𝑏𝑏 𝑅𝑅 𝑇𝑇1.5 �

ℎ
1+ℎ

�  

where ℎ  ≡   𝑏𝑏
𝑉𝑉

=  𝑏𝑏𝑃𝑃
𝑍𝑍𝑅𝑅𝑇𝑇

  

What I would like you to do is just do not take this on face value.  There are some, which we may 

have to do because of the scope of this course itself. 

But, in this case its straight forward substitution, and substitution in terms of critical properties 

and finding out this particular expression. I would like you to take the next 10 minutes to start 

out with the Redlich-Kwong equation, multiply both sides by V by R T and bring it to this form. 

Please go ahead and do this and convince yourself that this is indeed the correct expression. Go 

ahead please 10 minutes. 
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Hopefully, you would have arrived at this expression here, which is by mere substitution and 

grouping b by V as h, and some transposition may be required … may be more of grouping of 

terms is required to get this expression. 

 

(Refer Slide Time: 05:08) 



 

We have already seen that a, and b can be expressed in terms of critical properties. 3.10 and 3.11, 

𝑎𝑎 = 0.42748 𝑅𝑅2𝑇𝑇𝑐𝑐2.5

𝑃𝑃𝑐𝑐
  

𝑏𝑏 =  0.08664 𝑅𝑅 𝑇𝑇𝑐𝑐
 

𝑃𝑃𝑐𝑐
  

 and this T c can be written in terms of the reduced properties. You know T r is nothing but, T by 

T c therefore; … T c is nothing but, T by T r. If we do that and substitute these expressions for a 

and b in the earlier formulation which is this.  

𝑍𝑍 =  1
1−ℎ

 −  4.934
𝑇𝑇𝑟𝑟1.5 �

ℎ
1+ℎ

�  

We will call this equation 3.15. 

ℎ =  0.08664 𝑃𝑃𝑟𝑟
𝑍𝑍 𝑇𝑇𝑟𝑟

  

We will call this equation 3 16. 
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It so happens, that any equation of state can be written in terms of the compressibility factor and 

reduced properties. If it is written in that way or written in that form, it is called the generalized 

equation of state. And in such a case the advantage, the big advantage is, the only data that one 

requires to use that equation … are the critical properties that are usually found in tables such as 

the one that is available in your textbook. 
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Whatever, we have said just now has already been formalized. You know when something is 

formalized, then there is a significant confidence in that formalism to use it in general.  Whatever 

we have said so far in the generalized equations of state has actually been formalized into a 

theorem called the two-parameter theorem, which essentially states, that all fluids have 

approximately the same compressibility factor when compared at the same reduced temperature 

and reduced pressure. Or, in other words they all deviate from the ideal gas behaviour by about 

the same extent. This is essentially saying the same thing that we have mentioned earlier but, this 

brings in another prospective. 

Let us read the first sentence again to understand this prospective. All fluids have approximately 

the same compressibility factor, when compared at the same reduced temperature and reduced 

pressure. And from this just, by using the reduced temperature and reduced pressure 

appropriately, and using the compressibility factor we have information about a large variety of 

gases.  That is the advantage here.  

The theorem that we just mentioned, the two-parameter theorem and it is consequences gave 

results that were better compared to the … ideal gas equation for some simple fluids such as 

argon, krypton, xenon. 

So, there was some level of generalization there but, not the level that was acceptable. Therefore, 

… or significant deviations from the experimental values were found for other fluids apart from 

these so called simple fluids such as argon, krypton, xenon. 

And the way to handle that was to bring in another corresponding states parameter, in addition to 

this reduced pressure and reduced temperature. Now, we can see why this is called the 

corresponding states parameter.  Compare this state … this word corresponding states parameter 

(this phrase) with the theorem here: all fluids have approximately the same compressibility factor 

when compared at the same reduced temperature and reduced pressure. You would understand 

why we are calling this a corresponding states parameter. 
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And … when the third parameter was looked into to improve the predictions, Pitzer and co-

workers came up with a parameter called the Acentric factor, which we will represent by this 

letter omega here. What they found was – this was experimentally found by analysing a large 

amount of data.  They observed that the logarithm of the reduced vapour pressure of a species or 

of a pure substance is linearly related to the inverse of the reduced temperature. This was a 

powerful kind of information that was gathered from a large amount of data.  Or, in other words, 

the logarithm of the reduced vapour pressure, P r sat – saturated pressure is the vapour pressure 

that we are talking about – is a constant times 1 by T r. It is linearly related to the inverse of the 

reduced temperature.  

ln𝑃𝑃𝑟𝑟𝑠𝑠𝑎𝑎𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 ×   1
𝑇𝑇𝑟𝑟

  

We will call this equation 3.17. 

And further it was observed that at a reduced temperature of 0.7, the value of the logarithm of 

these saturated reduced pressures was minus one for simple fluids.  

ln(𝑃𝑃𝑟𝑟𝑠𝑠𝑎𝑎𝑠𝑠) =  − 1.0    

So, what it did was, it lead to an interpretation that the deviation of the log of P r sat for other 

gases at reduced temperature of 0.7 is a single measurement that you need to differentiate between 

… the simple fluids that follow the two-parameter theorem and all other fluids. 



And most importantly it is just one measurement. The deviation of log of P r sat at T r 0.7 can be 

used as a convenient parameter that is applicable to all gases. That is, in other words, this acentric 

factor can be used as a convenient parameter. The Acentric factor therefore, you know right from 

this thing here that at T r equals 0.7 log of P r sat was minus one for simple fluids.  And therefore, 

the difference between this and this or the deviation here would come in as a factor that would 

represent something apart from the simple fluids that was the thinking. 
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And therefore, the acentric factor was defined as  

𝜔𝜔 = −1.0 − 𝑙𝑙𝑐𝑐(𝑃𝑃𝑟𝑟𝑠𝑠𝑎𝑎𝑠𝑠)| 𝑇𝑇𝑟𝑟=0.7  

Let me repeat this once again for completeness.  The two-parameter theorem said that at the same 

reduced temperature and reduced pressure all gases have the same compressibility factor. And 

then they found that that theorem was only applicable only to simple fluids and not to all fluids 

… not to all gases.  And therefore, the way of improving the two-parameter theorem was to bring 

in a third parameter. And search for the third parameter led to something called an Acentric factor 

by Pitzer and co-workers. This came about from the observation that the logarithm of P r sat for 

a large number of gases is directly proportional to the inverse of the reduced temperature. … That 

was one aspect. 



The other aspect was, at a T r of 0.7, at a reduced temperature of 0.7, the value of log of P r sat 

was minus 1 for simple fluids.  And therefore, the deviation from minus 1 … of the log P r sat 

value at a T r of 0.7 would possibly give us a parameter that we are looking for – that was the 

thinking. And that was actually defined as the acentric factor, minus 1 minus the natural log of P 

r sat at T r equals 0.7. We will call this equation 3.18. 

As mentioned earlier … when I had presented this. I mentioned this … but, let me mention this 

again.  Only a single measurement of the saturated vapour pressure at a reduced temperature of 

0.7 is needed when the critical parameters are known. Therefore, we have brought down the 

measurements to just one additional value to describe a large variety of gases. 
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This was actually formalized by the three parameter theorem of corresponding states: All fluids 

with the same value of acentric factor have the same compressibility factor when compared at 

the same reduced temperature and reduced pressure. That is the theorem.  Or, in other words, 

they all deviate from the ideal gas behaviour by about the same extent. 

The generalized equation of state can be written as, in terms of the acentric factor, compressibility 

factor Z equals a certain Z naught plus the acentric factor and a certain Z 1.  

𝑍𝑍 =  𝑍𝑍0 +   𝜔𝜔 𝑍𝑍1  



Or, in other words the compressibility factor has been divided into two parts, Z naught part, and 

a Z 1 part multiplied by the acentric factor. This has now become the equation of state; we will 

call this equation 3.19. 

Why it is written in this from is that the values of Z naught and Z 1 are available readily in tables. 

So, one can use those tables and directly calculate the compressibility factor here. One or a few 

such tables are given in appendix E of your textbook Smith VanNess and Abbott. What I would 

like you to do now is to familiarize yourself with these tables. Please go to appendix E of your 

textbook Smith VanNess and Abbott and look at … how these numbers are given there or how 

these values are given there, Z naught and Z 1.  Take about 5 minutes please. 
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Now, that you have … familiarized yourself with the listing of Z naught and Z 1 values, and the 

acentric values are also available in a table and the appendix, let us look at things a little further.  

The tabulated values actually were calculated by a correlation that was given by Lee and Kesler. 

And these values give very good predictions within about 3 percent of the very carefully 

measured experimental values, but, for non-polar and slightly polar gases. Therefore, we have 

generalized this, but, not completely.  These gases, non-polar gases and slightly polar gases are 

fine, but, not the others. 



They do not work for the highly polar gases and gases that associate, or quantum gases also do 

not work very. We need to be a little careful when we apply the generalized equation of state to 

these gases – for highly polar gases, gases that associate or quantum gases. Further, you can get 

liquid properties, or in other words, you can use those equations when you are considering the 

liquid state.  But, the accuracy of the values is not very high. 
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Suppose, the table of Z naught and Z 1 values are not available to you.  Or the values are in a 

range that are not directly given in the table and reading of the table becomes difficult. In such 

cases, you can use the analytical expressions for Z naught and Z 1. I am just going to present 

these analytical expressions; we are not going to get into the origins of these analytical 

expressions. It is useful to know this; instead of using the table, you can use this, if there is a need 

to use it. One should always give the first preference to use the tabulated values.  

𝑍𝑍0 = 1 +  𝐵𝐵0 𝑃𝑃𝑟𝑟
𝑇𝑇𝑟𝑟

  

equation 3.20;  

𝑍𝑍1 =  𝐵𝐵1 𝑃𝑃𝑟𝑟
𝑇𝑇𝑟𝑟

  

equation 3.21.  



 

𝐵𝐵0 =  0.083 –  0.422
𝑇𝑇𝑟𝑟1.6   

equation 3.22;  

𝐵𝐵1 = 0.139 –  0.172
𝑇𝑇𝑟𝑟4.2   

equation 3.23.  

 

What we would do next is to work out a problem to become familiar with the application of these 

generalized equations of state; and I think since we have almost run out of time, we will start 

doing that in the next class. 

See you in the next class. 


