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Equations of State – Viral Equations 

 
Welcome!  

 

After review of some concepts that we have already seen earlier, in the earlier classes, courses, 

in the first module, we looked at some relationships that would be fundamental to 

thermodynamics and their interrelationships in module number two. In this module, module 

three, we will look at thermodynamic properties of pure fluids. 
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A fluid, as may be known, is either a gas or a liquid. And, let us continue the theme that we 

looked at in the later part of the previous module here also. First: easy to measure thermodynamic 

properties P, V, T of gases, we will look at. And then, we will do an extension, as appropriate, to 

liquids. Initially, it will be that of gases and then to liquids. And later, express other 



thermodynamic properties such as internal energy, U, entropy, S, enthalpy, H, Helmholtz free 

energy, A, and Gibbs free energy, G in terms of the more easily measurable pressure, specific 

volume and temperature. 
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We all know what an ideal gas is. And, let us state it here for completeness. The relationship 

between P, V and T for the so-called ideal gases must be very familiar. It is  

𝑃𝑃 𝑉𝑉 = 𝑅𝑅 𝑇𝑇  

Let us register this as equation 3.1 here; because we will need to refer to this in the later parts of 

the module, or may be later too. R as may be known is the universal gas constant; the value of 

which in these set of units is 8.314 joule per mole per Kelvin. V is the molar volume or volume 

per unit mole of the gas that we have already seen.  

And, this may or may not be known. In an ideal gas, we get such a simple relationship, because 

at the molecular level, … we consider no interactions between the molecules or the particles to 

make it general that comprise the gas.  That is what led to the ideality of the gas – no interactions. 
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Now, take a look at this. In terms of the chemical potential, µ, that we defined in module two, we 

can write the ideal gas or we can define the ideal gas as  

𝜇𝜇 =  𝜇𝜇0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

We will call this equation 3.1 a. Here,  𝜇𝜇0 is a function of temperature alone.  

Therefore, another way of looking at this equation, interpreting this equation, is that ideal gas is 

one, whose chemical potential mu at constant temperature, which means this will be a constant – 

R T can be taken as a constant at constant temperature, is a linear function of the logarithm of its 

pressure, the natural logarithm of its pressure. It is one of the ways of interpreting the ideal gas 

in terms of the chemical potential. This may also be known that the noble gases such as argon, 

the krypton, xenon approximate well to ideal gases. 
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Most gases are non-ideal, or they can also be called as real gases. So, what is the formulation that 

we could use effectively for real gases? Also, … as may be apparent, if it is a real gas, it is not 

going to follow the ideal gas equation or in other words for real gases, P V is not going to be R 

T, equal to R T, or the chemical potential µ of an ideal pure gas cannot be expressed as mu naught 

plus R T ln P. 

Therefore, we need another variable and that variable happens to be called fugacity f, which is 

used for real gases. The fugacity of a gas … in fact fugacity is a little general.  If you are going 

to define it for real gases, it should be applicable to the ideal gas in the limiting case. That is 

always a case.  Whenever you generalize, it should also take care of a special case. 

Therefore, the fugacity of a gas, either ideal or real, is defined as, or it can be obtained from this 

expression:  

𝜇𝜇 =  𝜇𝜇0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓              𝑓𝑓
𝑃𝑃

 
→ 1       𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0   

Note that, for an ideal gas it was mu equals mu naught plus R T ln P. Here instead of P, we are 

using this fugacity here. This is not the complete definition. We should also add that f, fugacity, 

by total pressure, P, tends to 1 as the pressure tends to 0. This is the complete definition of a real 

gas, or of a gas; whether real or ideal. Let us call this equation 3.1 b. 

And as mentioned earlier, under limiting conditions it should become an ideal gas. And of course, 

it is quite evident that mu equals mu naught … plus R T ln f should become mu equals mu naught 



plus R T ln P.   And therefore, fugacity must equal pressure for the ideal gas. This f by P is an 

interesting quantity. And, let us define it as a separate quantity here, and indicate it by the letter 

phi.  

𝑓𝑓
𝑃𝑃

 ≡  ∅  

We will call this equation 3.1 c. And, phi is actually called the fugacity coefficient. f is fugacity; 

phi, which is the ratio of f to P is called fugacity coefficient. 
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We already saw that real gases are not going to follow P V equals R T. And therefore, we need 

more accurate mathematical representations or more accurate models of the simultaneous 

variation in P, V, specific volume, and temperature. In other words, we need more accurate 

equations of state. In fact, the interrelationships between pressure, volume and temperature are 

called equations of state; P V equals R T is a very simple equation of state. We need more 

complicated equations of state … to represent real gases.  Let us look at a few equations of state 

for real gas in this course. There are many, which have been developed over the past century or 

more. So, let us look at a few of them which are quite heavily used. 
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The first of those equations of state that we are going to look at is called the virial equation of 

state.  To get to know what virial equation of state is, let us first define P V by R T. You know P 

V was equal to R T for an ideal gas. Let us define P V … by R T as a certain Z  

𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅

 ≡   𝑍𝑍  

Let us call this equation 3.2. This Z is called the compressibility factor.  

This Z can also be expressed as a power series in P. You would have learnt about power series 

expansions in your mathematics classes. And, if it is expressed as a power series it is called a 

virial expansion. 

 We will … first look at the expansion as a power series in pressure. Z can be written as  

𝑍𝑍 = 1 +  𝐵𝐵2 𝑃𝑃 +  𝐵𝐵3𝑃𝑃2 +  𝐵𝐵4𝑃𝑃3 +  𝐵𝐵5𝑃𝑃4 +  …  

This is the power series expansion in pressure. This is called the virial expansion or virial equation 

of state for the particular component. The particularity of the gas, comes about through B 2, B 3 

and so on, as I will explain in a little while. We will call this equation 3.3. B 2, B 3 and so on are 

called virial coefficients; B 2 is called the second virial coefficient, B 3 is called the third virial 

coefficient, and so on. 
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These virial coefficients represent the interactions between the molecules or the particles that 

comprise the gas; typically molecules. For example, B 2 represents the interactions between 

particles in a gas taken two at a time, considered two at a time. B 3 represents interactions between 

molecules taken three at a time, and so on. 

But, Statistical Mechanics looks at the way of counting and way of accounting for a molecular… 

properties and so on, molecular doings and so on; and their relationship between two microscopic 

properties such as internal energy, entropy, and so on.  

So, from very basic theory we can calculate B 2 and B 3. Here, I am not going to show you those 

calculations. I am just going to probably present the expressions, may be later on. And as 

mentioned earlier, virial expansions with unique virial coefficients for each gas can be written. 

Therefore B 2, B 3, B 4 and so on are going to be different for different gases. 
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For low enough pressures, say until a few bar, few atmospheres, the first two terms of the virial 

expansion alone are good enough to give accurate enough results. As we increase the pressure, 

we need to add more and more terms for the accuracy. What do I mean by accuracy? How close 

is the calculated value to the very carefully conducted experimental value.  Higher the pressure; 

more the number of terms, more the number of virial terms needed for accuracy. 

The virial expansion as we said is nothing but a power series expansion. It can be written in terms 

of molar volumes also. For example,  

𝑍𝑍 =  1 +  𝐶𝐶2

𝑉𝑉
+  𝐶𝐶3

𝑉𝑉2 +  𝐶𝐶4

𝑉𝑉3 +  𝐶𝐶5

𝑉𝑉4  +  … 

This is a power series expansion in V or 1 by V. And, we will call this equation 3.4. C 2, C 3 and 

so on can also be calculated from theory, similar to the calculation of B 2, B 3 and so on. 
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Now, we have looked at some new information. So, let us workout an example or an exercise to 

understand this and apply and gather the skills of application a little bit. This is example 3.1. 

Isopropanol or rubbing alcohol has many biological uses. It is used as a drying agent to prevent 

swimmers ear. It is also used in sterile pads to store biological specimens. And, even in certain 

laboratory procedures such as the one to extract chromosomes. So, it has very many applications. 

And, you will find that we will be using isopropanol as one of our model substances for presenting 

the applications in this course. We will use a quite heavily. 

 In one of the steps that was experimented to optimize isopropanol production, it became 

necessary to heat pure isopropanol to 200 degrees Celsius and increase its pressure to 10 bar. 

What is required here is, estimate the volume of the vessel necessary to maintain the above 

conditions for one mole of isopropanol. Compare the value … with that obtained, by considering 

isopropanol vapor to be an ideal gas. So, that would quickly give you what are the kind of 

variations that you would expect when something is real and you use an ideal gas expression to 

represent it. And to do that, we will need the virial coefficients for isopropanol. These are 

available in the appendix of your textbook at the back. For ease, let me present it here itself. C 2 

is, … remember C the coefficients and the virial expansion with respect to V. So, C 2 equals 

minus 3.9 into 10 power minus 4 meter cube mole; C 3 is minus 2.6 into 10 power minus 8 meter 

power six per mole squared. 

So, please go ahead and work this out. Take about ten minutes. After about ten minutes … to 

think through the problem, to see what is available, what is needed, how do you make the link 



between what is available and what is needed. Go through all your notes, the previous slides here. 

And then, I will start giving you some hints. And then, give you more time and then probably 

present the solution. Go ahead, ten minutes please. 
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Ok. Let me give you some hints to work out the problem. The first hint, which was quite obvious, 

once you thought through it is: consider a virial expansion in V. And the real hint is, take the first 

three terms. And, let me also give you the second hint and leave you for another ten minutes to 

work things out. And, that is the solution is not a very straightforward solution. It involves an 



iterative solution. So, set up an iterative solution process for V, or in terms of V; because the 

specific volume is what we are looking at.  The volume of the vessel that will hold one mole of 

the substance, which is essentially the specific volume is what we are looking for. And, so set up 

an iterative solution process for the same. Go ahead, please take another ten minutes. 

Let me present a part of the solution and give you some more time because I am not very sure 

how comfortable you are with the iterative solution process. So, to get more comfortable with 

that, I probably need to give you more time. But, first let me present the initial part of the solution. 

 

 

 
 

 

Let us begin with the first three terms on the right hand side of equation 3.4. 3.4, if you want you 

can go back and check your slides. It is nothing but the virial expansion in V, or the 

compressibility factor Z expressed in terms of the powers of V or 1 by V.  

𝑍𝑍 =  1 +  𝐶𝐶2

𝑉𝑉
+  𝐶𝐶3

𝑉𝑉2  

Let us start with this. It will turn out to be decent enough. We are trying to find out the volume. 

And therefore, we need to express this in terms of the volume. Therefore for our purposes, it can 



be written as, … you know Z is nothing but P V by R T. Therefore, if you multiply both sides by 

R T by P we get V. 

𝑉𝑉 =   𝑅𝑅𝑅𝑅
𝑃𝑃
�1 +  𝐶𝐶2

𝑃𝑃
+  𝐶𝐶3

𝑃𝑃2
�  

Let us call this equation 3.4. I will check the numbering a little bit. The same; pretty much the 

same, with just three terms taken. 
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This is the equation and this can be solved iteratively for V. Let me give you the algorithm to do 

it; because we need to do very many calculations. And, once I present the algorithm, I would like 

you to take the remainder of this lecture, may be another ten minutes or eight minutes to work 

that out. Maybe you will need a little bit more time. It takes a few steps to converge. 

Let me present the algorithm first, or the procedure. First, guess a value for V. Substitute it into 

the right hand side to find a value … you know … in terms of C 2, C 3 and R T by P, and so on. 

Guess a value for V; substitute it here to get a value. And, compare that with the guessed value.  

Remember that V was something that we guessed to begin with the first time, and then we 

substituted the same V here to find out this value. And now, compare the right hand side with the 

left hand side. 



 If the calculated value, the right hand side is close enough – you know the operative term here 

is close enough. You know, you might be working with 10 power minus 3 and so on and so forth. 

If all the values are in the range of 10 power minus 3, it does not really, it is not really close 

enough. Close enough to the guessed value. Then, the guessed value is the needed value. 

Otherwise, the calculated value is used as the guessed value for the next generation.  

Whatever you calculated here you put it here and then substitute back here to get another 

calculated value. And then, you check how close this is to the guessed value or the value in the 

previous step. The process is continued till the difference between the calculated and the assumed 

value becomes acceptably small. Please go ahead and do this. Try it doing for about five steps. 

That is the hint. So, try it doing for about five steps. And, when we begin the next class, I will 

give you the complete solution. 

 


