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Hello everybody. Welcome to the last topic as part of this NPTEL course on material and energy

balances. Today we will be talking about unsteady state material and energy balances. Until now,

all  the  processes  that  we  have  looked  at  are  at  steady  state.  So  we  have  always  assumed

accumulation to go to 0.

However, under certain special conditions this does not have to be true. So in some cases like

batch systems or semi batch systems or continuous systems during startup and shutdown, the

processes would be unsteady. So we have to account for the accumulation term as well when we

perform material or energy balances.
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Today, we will see how to perform such unsteady state balances. So here what happens is the

quantities or the operating conditions within the system will be changing with respect to time.

Because these parameters are dependent on time, they are unsteady state. They are also called as

transient processes. So these complex systems are actually more tedious to solve compared to

steady state process.



Unsteady state  processes  in  the  industry  could  be  seen in  batch or  semi  batch processes  or

continuous systems during the startup and shutdown. So when the system is fully operational,

they usually operate at steady state. However, every year or every month depending on the size

of the company and the process, the processes might be shut down and started up again. So

during  this  initial  phase  of  startup and final  phase of  shutdown you would  be experiencing

unsteady state processes.

There can also be unsteady state when one of the process condition is being changed to another.

Also if there are fluctuations in the input or control variables you might experience unsteady

state process.
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So before we start solving unsteady state problems let us visit the general balance equation. So

the general balance equation which we have been using throughout this course is given here.

Accumulation = input – output + generation – consumption. So in this equation we have always

assumed accumulation to be 0 when the process is steady state.  Until  now, we have always

ignored that term.

We  have  only  worried  about  input,  output,  generation,  and  consumption.  Generation  and

consumption terms had to be calculated only for reactor  processes and if  we had total  mass



balances then generation and consumption went to 0 and also for nonreactive components. Input

and output are the terms which we almost always calculated. In some cases, those were also

going to 0 if you are talking about close systems, okay?

So now, let us look at how this equation would be for a mass balance. So for material balances,

mass accumulated = mass entering – mass leaving + mass generated – mass consumed.
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So if we were to take the following system which is a continuous system with m dot in as the

inlet mass flow rate m dot out as the outlet mass flow rate, r g is the rate of generation of a

component and r c is the rate of consumption of a component, then we can actually write general

material balance equation. So in these parameters, until now we have assumed that none of the

parameters will change with respect to time.

However, in an unsteady state material balance these parameters can actually change with respect

to time.
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So to account for that our balance equation would have to be considered for an infinitesimally

small time interval. So if you take delta t as an infinitesimally small time period between times

points t and t + delta t then you can assume that the system variables are a constant for this

particular small period. So even for an unsteady state process, we can assume constant system

variables for very small time periods.

So using that  we would actually  be able  to calculate  the mass entering,  mass leaving,  mass

generated, mass consumed within this time period as the rates time the time. So if we were to

calculate mass entering it would be m dot in which is the rate of the mass flow rate for the inlet

stream times delta t which is the time period which we are looking for.

So it will be flow rate times time. So that will give you the mass which is entering into the

system during the time period delta t. So that is m dot in delta t. Similarly, mass leaving during

the period delta t is given as m dot out delta t. Mass generated is given as r dot g delta t and mass

consumed is given as r dot c delta t. so now that we have these terms we can plug them into the

general material balance equation we have.

However, we still have to account for accumulation. So accumulation is nothing but change in

mass over the period of time. So we can assume delta t is the change in mass inside the system

during this period delta t. So this delta m is the accumulation.
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So substituting all these in the general material balance equation we had, the equation becomes

delta M which is accumulation = m dot in delta t the inlet stream – m dot out delta t the mass of

the outlet stream + r dot g delta t which is the generation term – r dot c delta t which is the

consumption terms. If you were to divide the entire equation by delta t, then you would get delta

M/delta t = m dot in – m dot out + r dot g – r dot c.

As delta t tends to 0, basically as delta t becomes smaller and smaller and becomes completely

infinitesimally small then this equation can be further modified to dM/dt = limit delta t tends to 0

delta M/ delta t = m dot in – m dot out + r dot g – r dot c.
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So the differential balance equation for an unsteady state material balance would be dM/dt = m

dot in – m dot out + r dot g – r dot c. as long as any of the term varies with time, the differential

on the left had side which is dM/dt is non-zero. So if all of them are independent of time, then

your  accumulation  will  go  to  0  and  it  becomes  a  steady  state  process.  For  unsteady  state

processes  one  of  these  4  components  which  you  see  on  the  right  hand  side  input,  output,

generation or consumption is actually dependent on time.

There could be more which are dependent on time as well. But at least one has to be dependent

on time. If that happens then the process is unsteady state and dM/dt cannot go to 0. To solve the

differential  balance  equation,  you  need  a  boundary  condition  because  it  is  a  first  order

differential equation and to solve this you need at least one boundary condition usually an initial

condition where M at the time t = 0 is given. So once you have this information you can actually

solve the differential equation which is given here.
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So here is an example problem which will help us construct such differential balances for the

total  mass and for a component  A. So the problem statement  says a continuous stirred tank

reactor is used to produce a compound R in the liquid phase reaction A gives R. feed enters the

reactor at a rate of v naught dot L/s, concentration of the reactant in the feed is C A naught moles

of A/L. The volume of the tank contents is V in liters.

The vessel may be considered to be perfectly mixed. So the rate of consumption of A is given as

kC A mol/s L where liter is the reaction volume. Assume all fluids have the same density rho. So

basically density is not changing. You are asked to write the differential balances on the total

mass and moles of A. So let us try to write this differential balance.
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As we have always done the general balance equation you would have would be input – output +

generation – consumption = accumulation. So if we look at this equation we have been asked to

write the differential balance for total mass and moles of A. So let us first start with total mass.

So for total mass you would have generation and consumption will go to 0 as mass can neither be

created nor be destroyed.

So this would mean you are left with input – output = accumulation. So once you have this

equation, we now have to account for the mass which is entering into the system and the mass

which is leaving the system. So the total mass which is entering the system can be obtained by

the volumetric flow rate multiplied with density. So that would be V naught dot times rho giving

liters per second times grams per liter which would give a mass flow rate of grams per second.

And the output stream would be V dot times rho. So here V dot is the volumetric flow rate in

liters per second and rho is density in grams per liter giving you grams per second, again a mass

flow rate. So now the accumulation term has to be accounted for. The accumulation term would

be dM/dt. So this M is the total mass of the components inside the reactor. So how do we account

for this M?

So that would be equal to rho times V where rho is the density and V is the volume in liters of

the reaction mixture inside the reactor. So now we have this. So the equation then becomes V



naught dot rho – V dot rho = d rho V/dt. So where rho is actually a constant so it can be taken out

of the differential. So it will become rho dV/dt would be = V naught rho – V dot rho. So the rho

can be cancelled.

So the equation becomes dV/dt which is the change in volume with respect to time = V naught

dot – V dot. So this is the differential equation. From here we have to get, we can solve the

equation only if we have the initial condition. So what would be the initial condition? At time t =

0, v should be equation to V naught which is the volume at time t = 0. So this would be the

differential equation with the initial condition.
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The next aspect of the question is to solve for the differential balance for number of moles of A.

So let us try and do that. So we are trying to write a balance for moles of A. So this would have

input – output + generation – consumption = accumulation. So here only generation term will go

to 0 because A is a reactant and not a product. You have A entering the reactor, so you have an

input term. A is leaving the reactor, so you have an output term.

A is being consumed by the reaction, so there would be a consumption term and accumulation

would be happening because it is an unsteady state process. So in the input term, we would have

to calculate the number of moles of A which is entering the reactor. So earlier we multiplied



density with the volumetric flow rate to get the total  mass entering the reactor. Here we are

interested in knowing the number of moles of A which is entering the reactor.

So which would mean the rate at which the volume is entering, the volumetric flow rate times the

concentration can give you the molar flow rate of A into the reactor. So you would have V naught

dot times C A naught will give you moles of A per second. Similarly, for the output term, it

would be V dot times C A. So the next term would be consumption. For identifying what the

consumption would be you would have to go back and see what the rate equation given was.

So the rate equation was given as KC A. So your consumption term becomes K times C A and if

you were to look at the units for the consumption term, it was moles of A per second liter. So to

convert this into the number of moles of A consumed per second, you would have to multiply

this term with the volume of the reactor which is V. So with this you get the consumption term.

So the last term you have to look for is the accumulation term.

So the accumulation term would be dN A d t. I am using N instead of M because I am using

number  of  moles.  So  this  number  of  moles  of  A can  be  calculated  by  multiplying  the

concentration of A inside the reactor times the volume. So this would be d C A times V dt. So

what you would notice is both for the consumption term and for the accumulation term I have

used C A which is the concentration of A which is leaving the reactor.

So this is because we have been told that the system is perfectly mixed. That means that the

concentration of the outlet stream would be equal to the concentrations in the system. So that is

why we are using C A which is the concentration of the exit stream for A as the concentration of

A inside the reactor as well. So now that we have this, the equation can further be simplified to

get V d C A/dt + C A dV/dt = V naught dot C A naught – V dot C A – K C A V.

So this would be the differential equation. Now we also need to write what would be the initial

condition. So at time = 0, we do not know what the concentration of A would have been. So we

can just say C = C A of time 0. So this would be the initial condition. With this we have the

differential balance equation for number of moles of A and the initial condition.
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So in the previous example, we looked at how to write the differential balance for an unsteady

state process. So this was the differential balance which we wrote. So to solve this differential

balance we would have to rearrange this equation and integrate it. So the above equation can

actually be rewritten as dM = m dot in dt – m dot out dt + r dot g dt – r dot c dt. So this can then

be integrated between the limits of initial times t naught and final time t f and when you do this

integration, you will be able to solve the equation.
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So while you are integrating the equation between the limits t naught to t f you will get this

equation which can then be simply called as the integral balance. So once you know how these



terms  are  actually  changing with  respect  to  time,  you can  plug  in  these  functions  into  this

equation  and solve  for  the  unknown.  So this  is  called  as  an integral  balance.  Let  us  try  an

example problem which will  help us practice how to get integral  balances and solve for the

desired values.

(Refer Slide Time: 17:14)

So here is an example. The water level in a municipal reservoir has been decreasing steadily

during a dry spell. There is a concern that the drought could continue for another 60 days. The

water consumption rate of the city is estimated to be 10 power 7 L/day. The net water input rate

which accounts for rainfall and stream drainage into the reservoir is estimated to be 10 power 6

times exponential of –t/100 L/day where t is the time in days from the beginning of the drought

when the reservoir contained 10 power 9 L of water.

Calculate the reservoir volume at the end of 60 days of drought. So how would we go about

solving this problem?
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So  first  we  would  have  to  write  the  general  balance  equation.  We will  have  to  write  the

differential balance and then rearrange it, integrate it to get the final values which is the final

volume of the reservoir after 60 days of drought. So let us try and do this. So as usual, we would

start with the general balance equation, general material balance equation which is input – output

+ generation – consumption = accumulation.

So generation and consumptions terms will go to 0 because there is no reaction happening. So

you would end up with input – output = accumulation. So the input term has been given as 10

power 6 times exponential of –t/100 and this is given in terms of liters per day. To convert it into

mass you would have to multiply it with density because this is water we know the density which

is 1 kg/L.

So multiplying this  with 1 kg/L as the density you would get  this input  in terms of kg/day.

Similarly, output stream can be calculated. So it is 10 power 7 L/day converting into mass you

would  get  10  power  7  kg/day.  So  the  accumulation  term  has  to  be  accounted  for.  The

accumulation term is dM/dt. So this dM/dt can be written as d rho v/dt where rho is the density

and v is the volume.

So this will  become rho dv/dt and because rho = 1 kg/L the equation term for accumulation

would be dv/dt.
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Plugging these values back into the equation you would get dV/dt = 10 power 6 exponential of –

t/100 – 10 power 7. So this equation has to be solved. So rearranging this equation, you would

get dV = 10 power 6 exponential of –t/100 – 10 power 7 times dt. So integrating this equation

you would get integral dV = integral 10 power 6 exponential of –t/100 dt – integral 10 power 7

dt. So now, what would be the limits for this differential?

So we know the initial volume of the reservoir before the drought started was 10 power 9. We

have to find the final volume. Let us call that V. So we know that the drought lasted for 60 days

and which means that the day in which the drought started can be considered to be time = 0 and

the last day of drought would be 60. So the time frame is from 0 to 60. So this would be the limit

with which we would have to integrate this.

So this would mean the equation becomes V – 10 power 9 = 10 power 6 exponential of – t/100/-

1/100 with the limits of 0 to 60 – 10 power 7 60 – 0. So solving this equation so we can actually

substitute the values of t from the limits.
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By applying the limits and solving the given equation we can get V = 10 power 9 minus 10

power 8 times exponential of – 60/100 – exponential of 0/100 – 10 power 7 times 60. So you can

solve this equation and you will be able to get the value for V as 4.45 times 10 power 8 L. So this

would be the final volume of the reservoir after 60 days of drought.

As you can see from these calculations when we did the differential balance we were able to get

an equation which can actually explain the correlation between the terms which are changing

with  respect  to  time  and  accumulation.  When  we  actually  use  the  integral  balance  we  can

integrate and get numerical values based on the limits that we apply and the initial conditions

that are provided. So we will move on to the next concept.
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So when we are solving unsteady standard material balances there is a general procedure which

we should follow. So we will go through that. The first step is like for any other material balance

problem you would write the general balance equation and eliminate terms that are equal to 0.

The next thing is you would write an expression for the total amount of the balance species in the

system and differentiate it with respect to time to get the accumulation term.

So for example when we first did the total mass we did dM/dt whereas in the second part of the

first example we were looking to write the balance equation for number of moles of A so we

wrote d N A/dt. So basically what you have done is you have written the total amount of the

balance  species  in  the  system  and  you  have  differentiated  it  with  respect  to  time  and  this

becomes your accumulation term.

You are asked to substitute the system variables to the other terms basically the input, output

generation  and  consumption  terms  need  to  be  substituted  based  on  information  which  is

available. If there is a function of time, if something is actually y of t is a dependent variable to

be  determined  then  you rewrite  the  equation  to  get  an  explicit  expression  for  dy/dt  with  a

boundary condition for y at given t. So usually initial condition which is y equals something at t

= 0 is provided to u.
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So then the last step is to solve the equation analytically if possible. So if not you would use

numerical methods to solve it. So you can also check the solution. So here if you were to check

the solution what you would do is you can substitute the boundary or the initial condition to the

expression obtained to confirm if the known value of the dependent variable is obtained when

you actually do this.

Then another method can also be employed to check the solution which is you can differentiate

the solution obtained to verify if you can arrive at the initial equation. By doing these kinds of

verification you can confirm if the solution you arrived at is accurate. Last step if required might

be to plot the solution using a graph or to build a table which will give you the values.
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Here is one last example for unsteady state material balances. We will try to solve this to get

clarity on the procedure which we just described. A liquid phase reaction with stoichiometry A

gives B takes place in a continuous perfectly mixed 10 L stirred tank reactor. The tank is initially

filled with a solution containing 2 moles of A/L and the inlet and the outlet flows then begin.

Write a balance on species A and provide an initial condition.

Calculate C AS the steady state concentration as t tends to infinity. Solve the balance equation

for C of A and check the solution and plot the curve. So here we are expected to first write the

differential  balance and then apply the limit  of t  tends to infinity  to  get  what  would be the

concentration of the substance A which would be the steady state concentration and then the last

objective is to develop an equation which would represent concentration of A as a function of

time and then we have to plot a curve. So let us see how to go about solving this problem.
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As usual  we start  with the general  balance  equation which is  input  – output + generation  –

consumption = accumulation.  So here you do not have a generation term for component  A.

However, you would have a consumption term. You do have input and output and accumulation

terms. So the input term would be equal to 0.15 times 10 because 1.15 is the volumetric flow

rate, 10 is the concentration of A in terms of moles per liter.

So doing this multiplication you would get moles of A per second which is the molar flow rate of

A entering into the system. So this would become 1.5 moles of A/s. so output would be 0.15

times C A. We do not know the outlet concentration. So we will just call it C A as given in the

problem. So it will be 0.15 C A would be the moles of A in the outlet stream per second. So

consumption term has been given as 0.0050 C A which is the rate equation.

And as we had discussed already this has to be multiplied with the volume of the reactor to get

the moles of A which is consumed within the reactor per unit time. So this would give 0.0050

times 10 C A. So your consumption term is actually equal to 0.05 C A. It should again be in

terms of moles of A/s. accumulation term as we had already described would basically be d times

number of moles of A dt.

So it is the differential with respect to time and this N which is the number of moles of A can be

written as the number of moles of A which is present inside the volume would be volume of the



reactor would be d times C A times V dt. C A is the concentration of A inside the reactor and V is

the volume.  Again we are using C A in both consumption and in accumulation because the

system is perfectly mixed.

As the inlet and the outlet flow rates are equal, the volume of the reactor will not be changing

and the volume of the reactor has been given as 10 L. So this d C A V/dt can be written as 10

times d C A/dt. So this would be the equation for accumulation.
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Now substituting all these back into the general material balance equation we had we would get

10 d C A/dt = 1.5 – 0.15 C A – 0.05 C A where 10 times d C A/dt is the accumulation term, 1.5 is

your inlet term and 0.15 C A is your outlet term and 0.05 C A is the consumption term. So this

equation becomes d C A/dt = 0.15 – 0.02 C A. So we also need to identify what would be the

initial condition.

So it has been given that at time t = 0 the reactor is charged with a concentration of 2 mol/L. So

the concentration of A in the reactor at time t = 0 is given as 2 mol/L. So this would be the

differential balance equation and the initial condition which can be used to solve this problem.

So the next part of the problem asks us to calculate the value of C A,s which would be the steady

state concentration of A. So at steady state what would happen? d C A/dt will be = 0.



So substituting this back into this equation you would have 0.15 – 0.02 C A = 0. So that would

give C A = 7.5 mol/L. So that would be the steady state concentration of A when time tends to

infinity.
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For the last part of the problem, we have been asked to calculate, we have been asked to write C

A as a function of time. So that can be obtained by integrating the differential equation. So we

had d C A/dt = 0.15 – 0.02 C A. So this would be d C A/0.15 – 0.02 C A = dt. So integrating this

equation, we would be able to solve for the required correlation. So what would be the initial and

final condition? What would be the limits?

So C A is basically from 2 moles which would be the initial condition. And final concentration is

C A which is the outlet stream concentration or the concentration inside the reactor at time t and

similarly time would be from 0 to t. So because we want to start from time 0 where concentration

of A is 2 mol/L and go to time t where the concentration of A is C A. So using this equation we

can actually integrate and get this as the solution. You would have ln(0.15 – 0.02 C A)/ - 0.02

with limits of 2 to C A = t. So this can then be further solved to get ln (0.15 – 0.02 C A)/0.11 =

-0.02 t.
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So from the previous equation we can get C A as C A = 7.5 – 5.5 times exponential of -0.02 t. So

we can verify this as well. All we need to do is differentiate this equation or substitute the initial

condition. So let us try substituting the initial condition. The initial condition was at time t = 0 C

A was 2. So let us try to do that. At t = 0 what would happen? You would have C A naught would

be = 7.5 – 5.5 times exponential of 0.

So this would make the equation to be C A naught = 7.5 – 5.5 which is = 2 mol/L. So we are able

to verify and get the correct answer so that it means that the equation we have which is the

correlation for C A as a function of time is accurate. So the last part of this problem is to plot the

curve. So let us try to plot the curve. So this would be C A in terms of mol/L and this would be

time as time goes here. So let us mark the points. 2, 4, 6, and 8. So at time t = 0, C A = 2.

So from here if you were to plot the curve, it would look something like this where it plateaus off

at 7.5 mol/L. So that is the maximum concentration you would be able to get because that is the

steady state concentration which we calculated at time t equals infinity. So with this we have

solved an unsteady state material balance problem. So we will continue in the next section where

we talk about unsteady state energy balances.


