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Lecture — 07
Some Example Models

In today's video, we will look at some example models which are interesting because you want to
understand whether you know a model is mechanistic or dynamic or stochastic and so on and
what are the assumptions that go into a model. So, to fixate all the ideas that we looked at in the
last few videos, let us look at a few interesting example models.

(Refer Slide Time: 00:31)

Insulin-Glucose Dynamics (The Minimal Model)

What does it modal?

The concantraticns of interstitial insulin and gluccss over time, and tha interactcns batwssn ths
e

What does it neglect?
The reaction of the pancreas to glucose, among marry other finer, sub-first-order interactions,
Characteristics of the Model

Mathematical

Data Fit

Deterministic = The result and squation are determanstic for & given person
Closed — All necessary interactions are encompassed within the model
Correlative — The curve is fit and equations are derived based on experimental valuss
Emplrical — The madels are typically tested with data from experiments where glucese Is injectad
Intravencusly and msulin and glecose concentrations are measured at regular time intervals
Continuous - The result is & differential equation, which can provide concentrations of insulin and |5
Rlucose at any ghven time, given the initial concentrations.

Salient Features of the Model
Two compartment madel = Lowest complesity known to moded this systern
Pararmeters change depending on the persan

Use in diagnosis and in paticnt treatment

Should ideally lead to an artficl panerass in the future Glucose © N Insulin
Mathematics of the model X Xy
dx, dx A
= =—(p tx)x; +pig., == = —pyx; + pylu — ie)
ail o~ dt e x
where g, and |, represent the equilibrum values of glucose and insulin, x, is the cancentration of blood

Elucose and x, s praportional to the concentration of terstitlal insulin, py, p, and p, 378 PAFAMELENs
dafinad by the charactaristics of tha parsan of intasast,

Welcome back, let’s just take a closer look at some nice example models and try to understand
various aspects of it, you know the modelling process that we discussed earlier about what is the
scope, whether it’s a continuous model, empirical model, correlatory model, dynamic model and

so on. This is a classic very, very simple model of insulin-glucose dynamics.

It 1s a minimal model. What does it model? It just models interstitial insulin and glucose over
time and the interactions between the two. It neglects so many other things, right? Now, there is
pancreas, there is glucagon and there is a very complicated signalling network, there is some
receptors involved. All that is ignored. It’s a very, very simple simplified model of what happens

to glucose and insulin.



So, this is a deterministic model. No stochasticity is considered. It’s a closed model, It’s a
correlative model. It’s also somewhat empirical in the sense, it’s not a mechanistic model, it’s
continuous of course because it varies with time and it’s considered as a two compartment
model. You have one box with glucose, one box with insulin. It is a two compartment model and

very simple equations, right? Just two differential equations to explain.

So, this is a very simple example, this is a kind of what I want you to work on in your
assignment, your first assignment where you want to make a single slide about a particular
model.
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Kalman Filter
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Another example is the Kalman filter which is till date remains a very, very popular model for

handling noise and so on, so I will not go through the details.
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Gambler’s Ruin

= Stochastic model that ermploys random walks to predics the outcome of a game of
pambling

*  Parameters in the model are the probakilinas of wanning and kosirg a partoular
game, say p and g and the amaunt placed as bet by the gamibber

*  Fora given initial amsaount of maney the model pradicts whathar the gambler
reaches hisfher abgective or goes broke
= This madel can be reduced to a Markow chain:

for an initial state 7, the protability of reaching a state o, betare state b based on p

arai g 0 =} " P
L] q q o

Figure showing the chain when the obhjective is 4 and stakes are of worth 1
= Model dsed G presdict prabability of w-l:.u":uln in a fair game, i.e p=g=0.% when
— Opponent & infinitely rich
— Stakes are moreased or reduced

But this is another example model which talks about Gambler’s ruin. It’s a stochastic model that
employs some random walks to predict what happens in a game. Similarly, a very good example
is you can actually model a tennis game. So, you can have just setup a Markovian process
wherein you have every state will be a particular score in the game and you can transit to

different states and similarly, you can have a set of states for the match and so on and so forth.

So and this is potentially a model. You say that a player 1 wins with a probability P and player 2
wins with probability 1 - p and you can actually set up equations and say what is the probability
of player 1 winning the match, right? That can be derived based on, so that would be a, it would
be a stochastic model because each time you run it, you will get a different set of results.
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Newton’s model of Motion

A cantinuous and analytical madel developed by Isasc Newton ta describas the
mation of bodies due to forces.

= This madel is powermed by the thres lws of motion
developed by him:

i.  Fwery body persists inits stste of being al mest or of
mcwving uniformly straight forward, except insofar as it
is compelied to chanpe s state by foroe improssed

i The alteration of motion is ever proporticnal to the
mastive force impress'd; and is made in the direction
of the right line in which that force is impress'd.

in,  Torevery action there is always an cqual and opposite
regction: or the forces of two bodies on each other
are alwesys popal and are disecled in opposile
directicns.

lansc Haaten, Tha Princioia, & saw transl win by |G Cobven snd A Whitran, Usssuiy of
Caltaraia prea, Busksbry L.

= Srnall partices and welocities close 1o the spesd of light
canmat be handled by this maodsl.

Jhd
[: = The cemservation of mementum was derived using the thigfs
lavw from the first section. An analytical explanation ooul -.rﬁ‘*
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Model: The Carnot Engine

* [ts an continuous and theoretical system. First
proposed by Sadi Carnot{1796-1832).

e = Follows laws of thermadynarmics;
£ : e (T Tel ‘-
Carnal eMiciency = 1- (TufTe) = 1- [T000]

: 0. i =
» I = {WWherne n-heat in; o- heat out);
-")} = dE= dOfdT and classius ineguality are

W notable contributions carme out of this model;
r

* Carnot engina, though hypothetical, pave a great deal of
thegretical understanding and mathematical eguivalents for each
concept, in thermodynamics, and halped us to understand the
concept of entropy in particular.

* |t pave engineers an upper limit, a functional end point, a limit G
that can be achieved by any heat engine.
* But Carnat engine considers uniform resistance and absance g
friction thus ecuations derived has to be madified to include | y
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Zipft's law
* Empirical law in statistics. Originally found to describe word
frequencies (1932) and city sizes (1949)
* Discrete power law distribution. lagef; — loge + klogé

i = rank, cf_i=collection frequency

D" kowe amd v Sowwrowr

Superseded Fareto distributions
and provided a more general
framework to Benford's law
[financial fraud etc.)

AR of Rk VR

Describes features of social
networks such as the Internet; even
- used in web-caching strategies. ;"ﬁ

e T T T Unlike Gaussian distributions, th"ii:

e Ther b .1 Pl e 5, 1
mrm rrale o fram £

Good old Newton's model of motion or the Carnot engine. Zipf’s law, this is actually a very
interesting law particularly in the context of what we will study couple of classes down the line.
So, this study is the word frequencies in English text, so what it finds, what do you see? What do
you see here? It is a power law kind of thing, right? So, you have the log-log plot. It’s linear, so

for, okay this is the internet but this doesn’t actually describe Zipf’s law.

The Zipf’s law was originally for word frequencies. So, what would you expect if you looked at
word frequencies in the English language? You will have few words that are repeated an
astronomical number of times and the rest of the words all have much lower frequencies and so
on. So, majority of the words will have very low frequencies and a few words like, “A”, “the”,
prepositions and so on and some other you know conjunctions all of those will have a very high
usage. So, you end up finding a power law kind of distribution and this is something we will see
in biological networks as well as we go on.
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Duckworth-Lewis Model

ﬁl g S S

=N

. YAV

=The basic principle is that each team in a limited-overs match has two available
resources: wickets remaining and owvers to play

sAttempts bo set o statistically fair target for the second tearm's innings, based on the
scarg achbaved by the first team, taking their wickets lost and overs played inte account
=In 2004, the DL method was split into a Professional Edition and a Standard Edition
=The Standard Editicn preserves the use of a single table and simple calculation

s«The Professional Edition uses substantially more sophisticated statistical modelling, and
requiras tha usa of a computer [used in 0Dk}

Of course, Duckworth Lewis, right? Our favourite model. So, essentially there are various ways
to characterise these models, so you want to understand deterministic, stochastic, dynamic and
empirical, correlative, mechanistic all of these things is what you need to think of when you
analyse any model, when you want to understand the characteristics of a model. So, this is just a
basic recap of what we did earlier.
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Topics covered

¥ Some Example Models

I the next video ..

» How to represent biological necwarks!
» SBON

So, with this, we have sort of done with some of the fundamentals of mathematical modelling.
So, in the next video, let’s start looking at how we represent biological networks and something

known as SBGN or systems biology graphical notation.



