Computational Systems Biology
Karthik Raman
Department of Biotechnology
Indian Institute of Technology - Madras

Lecture — 48
PyGMO

(Refer Slide Time: 00:11)
|

Computational Systems Biology

PYGMO

® Introduction to PyCMO
» PyGMO Algorithms and Examples
» Multi-objective Optimisation

[arthik Raman

Cegarzment of Bietechralogy, Bhupac & [yoo beha Sct ool of Biosciences
Initiative for Biclogical Sysrems Engineening (IBSE]
Aamert Beseh Conrre far Dara Scierce and Arzificial Intelligenee [RBE DRAL)
INEIAH INSTITUTE OF TECHMOLOGY A4a704s

In today's video, I will introduce you to this very interesting software library called PyGMO. It is
written in python and it is, it also interfaces with some very efficient C code which is why it is
essentially a python wrapper for some C code. So it is very fast and I will be taking about some
of the algorithms implemented in python, in python GMO and PyGMO and some examples as to
how you go about using this library.

You will be interested to see that there are so many different kinds of flavours of evolutionary
algorithms that are readily available in PyGMO which you can use immediately and I will also
introduce you to the concept of multiobjective optimization. So what you do when you have
more than 1 object to worry about. For example, in our case, it could be more than data from
more than 1 experiment. How do you estimate parameters? I have told you different algorithms
but what tools do you use, let us look at a very powerful tool called PyGMO.

(Refer Slide Time: 01:06)

[
| e,

OVERVIEW PubMD

bt/ fesangithul.bo/ ppama
PyGMO: Python Parallel Global Multiebjective Optimizer

A scientific library providing o large number of aptimisation
algorithms {and problems!)

Builds on PaGMmO: Inifially developed within the European Space
Agency

Code was inlendad la help the aulamaied design of inlerplansiary ajec sries and
spocecratt transters in general

So PyGMO is basically a python package. It stands for Python Global, Python Parallel Global
Multiobjective Optimizer. It is a scientific library which provides a large number of optimization
algorithms as well as problems. There are many test problems that people use to stretch test any
given algorithm. There is something known as the Rosenbrock function and things like that. This
builds on PaGMO which was initially developed within the European Space Agency for, you
know, design or interplanetary trajectories and spacecraft transfers and Mangalyan stuff, right.

(Refer Slide Time: 01:41)

OVERVIEW

Powerful parallelization abstraction built oround the generolised island-mede
paradian

&ll algeriths are automatically porollelised to leverage mullisle cores

Tpelemen s o generahsed migrefon aparabor: alloes e e 1o ey delim *migration paibs”
Texsaulegies] besveen a large aumber of “slonds” [CPU coses)

Has efficient implementations of stote-of-the-crt bia-inspired algorithms

FyGMO can be used to solve constrained, unconstrained, single ohjective,
multiple ohjective, continuous, mixed integer optimisation problems

So it is a powerful parallelization abstract built around the general island model paradigm. So we
will look at what this is? So all algorithms are automatically parallelized to leverage multiple

cores, right. So they are, they work in basically islands. So there is a generalized migration

operator which allows the user define migration paths between these parallel optimizers. So it is,
it is to say in some sense, let us say you have 8 CPU cores, you can run simulated annealing on

one, DE on one, EA on 5 others, shuffle the solutions after a few iterations, continue, right.

This is as aggressive an optimization strategy as we can imagine, right. You are trying to
leverage the best of all worlds, right. There is some strength for EA, there is some strength for
simulated annealing, there is some strength for particles from optimization. You mix and match
all of these in whatever way you want, right. So PyGMO can be used to solve constrained,
unconstrained, single objective, multiobjective, continuous and mixed optimization problems.

(Refer Slide Time: 02:50)
|

EEEEERE} [I | bl

F o
M- e Druugietent i\-i-}

2 g) L
" - 1 1 1 Rl
g (@) — - | /

A slight detour, what do we mean by mutiobjective optimization. What is multi-objective
optimization? “Professor - student conversation starts” (()) (03:12) “Professor - student

conversation ends.”

Meaning you have more than 1... Cost function. Cost function, right. So you may have E1 of
theta and you may have E2 of theta. There are 2 different cost functions. May be this comes from
experiment 1, this comes from experiment 2, right and you may want to optimize, jointly
optimize them or separately optimize them but the moment you have 2 objective functions, how

do you say what is the best solution?

Because they have 1 objective function, I would say give me the theta that minimizes El, E of
theta. Now the one that gives you low El, may give you high E2 and vice versa. So you will
have to start worrying about it. So typical way is to plot it, right. You may get something like this

and you may end up computing what is known as the Pareto front.

“Professor - student conversation starts” Sir, instead why cannot we multiple with E1 by some
scalar and... You can, you can add El1 and E2 if you want, right and minimize it. That is a
possibility but usually these are 2, you can multiply them, you can take, you can take some
function of E1 and E2 obviously. But you may want to worry about, you may want to jointly
optimize the 2, right. So here, if at this point, you know that, you know, you got a very good
value for both E1 and E2, right.

So if you go in this direction, you will increase E2. If you go in this direction, you will increase
E1 but at this point, you have seemingly very good El and E2 values. Or you know, you would
have, like the front that looks more like this. You can have different kinds of fronts basically. So
if you have a different front, the optimization might look harder, right. What if the points were
all, you know, distributed like this, right?

It becomes harder. So, but you can basically, you may have to judge. You may have to judge
which is the more important experiment to satisty, right. Because they may have not come from
the same labs. You may, or this is an experiment that was reported in, you know, 2010 and this is
an experiment which was reported in 2017, right. You may want to make sure that you stick more
with this, may be the methodologies are slightly different, more in accuracy is here, whatever,

right or more inaccuracy is here, whatever, right.

You may have to bring in subjectivity, right. You cannot objectively say that yes just use some
E1+E2 or things like that. Sir for a given parameter set, you are finding the best cost function,
right. No, for a given cost function, we are trying to find the best parameter set. Okay. Right. For
a given cost function, we try to find the best parameter set. “Professor - student conversation

ends.”

So it gives a multiobjective, continuous, even mixed integer optimization problems. What are
mixed integer problems? Some solutions are integers. They are numbers, right. You cannot have
1.3, it is not continuous.

(Refer Slide Time: 07:28)

PYGMO LINGO }
Individual, Chompion

Fopulaticn

Migration

Topology

lsland, Archipelags

Algarithm .

Prablem

(]

A

#ﬁ
So there are, there is a lingo for PyGMO. There are individuals, champions, populations,
migrations, topology, island, archipelagos, algorithms and problems, right. I think most of them
are self-explanatory. I think you will care to understand what individual is. Champion is the best

of the individuals in a given round. Population, yes of course.

Migration is migration between different islands in an archipelago, right. So you set up multiple
islands of optimizers and each island will have an algorithm which will run on a particular
problem. You need to create a problem. This is basically object oriented programming stuff. So
you need to define a problem, class and so on and so forth.

(Refer Slide Time: 08:14)

ALGORITHMS

Diferent &l Dealutian (121 de Sehdetrie Selection [MOA (SME-LMOAT sms_emoa
Sell-adap live JE (JDE) jd= Corara's Simulated Annealing {34) SA_Corana
DE wrilhy p-besl crossover [mde_peg mde_pbx Parallel Decarnpasition (PADE) pace
Different &l Dvalutian (D) de 1220 Mon-dam inated Sorzing PSO [NSPS0) nspso

Pant ole Swaren Qi mizarian (FS0) pso Srrength Paretn FA 3 (SPEA| speal

Fart cle Swarem Optimizatian (PS0) p3o_gen Artificial Sen Cokamy JARE] bee_colany
Simple Gznetic Algorthm GRAY (G4 _GRAY] sga_pray Improved Harmaony Search {H3] Ihs

Simple Generic Alarthm (5GA) sga Pore Carlo Search (MO marte_carl
Vector Dvaluated Geretic Mgorthm (WEGA|] vega Porte Carlo Search (ML) py_cxamal,
{N-+1}-CA Cvel, Algorithm [SEA) ECT Covariance Matrix Adaptation I3 y_cmaes

e damisated SarTing G (NSGAT) nsga_ Ll Covariance Maris Adaptation F5 Crzes i‘-

What are the algorithms? Nice assortment of algorithms. You have differential evolution, self-
adaptive DE, DE with p-best crossover. This is something we found to be very useful when we
studied a few bio-models. Of course, particle, particle swarm and swarm optimization and simple
genetic algorithm and N+1 evolutionary algorithm or evolutionary strategy, so on and so forth.

Monte Carlo search, CMA covariance matrix adaptation in evolution strategy and so on.

These are all popular algorithms and it also has a particular flavour of simulated annealing called
Corana's simulated annealing algorithm. There are bunch of algorithms that are available.

(Refer Slide Time: 09:03)

PYGMO EXAMPLE

from PyGMO import *

prob = problem.schwefel(dim = 58)
algo = algorithm.de{gen = 500)

isl = island(algo,prob,20}

print isl.population.champion.f %
isl.evolve(10)

print isl.population.champion.f

And as simple as this to do PyGMO and of course you need to be familiar with python but if you

are familiar with python, it basically is just from PyGMO import everything and problem, this is
a particular problem that is defined in PyGMO. This has to be replaced with your problem. You
need to set up your parameter optimization problem here, right and algo is algorithm. Differential

evolution for 500 generations, create 20 islands, print island population champion function value.

What is the function value of the champion in the population in all islands, right? So this is
basically the initial value. This is essentially saying print X0. Now you evolve it for 10
generations or longer and you then, you evolve it 10 times and then you, you print the champion
across all those epochs.

(Refer Slide Time: 10:06)

.-I4‘
WHAT CAN PYGMO DO?)
Con eosily scale ta multiple CPUs Trom Pyidl impart *
prob = proglem, schwefel(din - 5680
Con egsily migrote solutions.... alpa = 1]
for 1 4n rangs{l,3):
... even between algorithms! algo. append{ algord thin, dedgen-588, waslant-1))

archl - archipelago(topo topelogy.ring())
For L in range(a8):
) archl, push nack(1sland(algo1],prod, 28))
‘:,Jﬂ\'{ primt min{[izl,population. champion. for izl in archil)
! [l
s
"f b)l' archi,evalve! 20)
-5

¢ primt min{[izl,pooulation.champdon. £ for 15l in arch

N

ﬁ
So what can PyGMO do? It can scale easily to multi CPUs. You can migrate solutions even
between algorithms. As I said you can have DE, PDE (()) (10:16) and just throw solutions from
one to the other. So, so you create an archipelago with a ring topology meaning... and each of
this (()) (10:03) with an algorithm, right. So there are i variants for differential evolution. So you

could variant 1 here, variant 2 here, variant 3 here, 4, 5, 6, evolve them for a while.

And then allow the algorithms to transfer the champions, transfer the information continue to
evolve. So you can see that this is a really aggressive approach to parameter optimization, right
and you need to be this aggressive if you want to solve some really complicated complex

optimization problems.

(Refer Slide Time: 11:07)

PARAMETER ESTIMATION j}

Dresign o “problem’
Build on the base problems defined in PyGMOD

Define a suirable objective function
Defuull: winirisalion reblemn

sinimisa the MEE hatwaan data oned Ht parmmatars?

Define o suilable algorilhm, wilh uppropriole "hyperporemelers”, such os number of
generations, number of individuals, (ilands, migration, ...|

Frini finess and a-value of “champion” {or even olher members of the final
population abeve a specific fitness value)

So how do we go about in the case of biological problems? You design a problem. There are base
problems defined in PyGMO. So you build on that. In classic object oriented fashion, you extend
those definitions. The default is the minimization problem, may be you can minimize the mean
square error between data and fit parameters or use whatever objective function we have been

talking about all along.

Define a suitable algorithm with appropriate hyperparameters such as generations, number of
individuals, etc, etc and then print the fitness and function, the parameter value of the champion
or even other members of the final population above a fitness value. So anything that is more
than, less than 5% error, you can print those parameters and then you can study these parameter
spaces. We will come to that in a moment, right.

(Refer Slide Time: 11:55)

USING MULTIPLE CORES

Extremely pasy! Trom Pyt import *

proobe = protdem, scbwefel (din - 580

algn = algariThn.delgen-sms)

archi = archipelagojalgo, prob, 8, 28)
archi.evolve -:19) evolves 10 print min{[icl.pepulatien.chanplion.f far 1zl in archi])
parallel populations across e Ul : : o !
Sy 5 preint ming[isl.pogulation. changion. £ fur- 1al In archi])
cvaloble cores...

Qna con also lock at all the final
populations and pick "good” ones
aut of them, instead of picking just
The: beest

Chedh out:
hitp={ Jeso.github.io/pygmedocumentation islond. him

And supertrivial to use multiple course, right. This automatically evolves across 10 parallel
course, finished. No work at all, right and please check out the documentation here.

(Refer Slide Time: 12:17)

OTHER TOOLS

LibReudrunner gives good helper functions Tor loading SBML models and simulation
-1+ oL

As eosy O3

import roadrunner
rro= rozdrunner. Roadrunner("mymoedel . xml™)
result = r-r'.slnulaLe[f}_- \3

rrplot(sT nﬂ"“"

|
#
The other tool called libRoadrunner, this helps you directly connect with SBML, right. So all you
have to do is import roadrunner, roadrunner. roadrunner mymodel.xml, simulate, plot. So this is

where all your integration automatically happens. You want to connect this to PyGMO. Very

well. So one interesting thing that remains to be discussed is we did see it briefly yesterday, right.

You have such parameter spaces. How do you study them, right? Or how do you even find these

parameter spaces? So you may want to systematically uniformly sample across this using latin

hypercube sampling on one of those methods. You can read more about latin hypercube
sampling. There are many sampling strategies. So you may want to sample like this and figure

out how the space looks like.

One very interesting aspect is you may find that, let us say these are 2 parameter directions, theta
1 and theta 2. You may find that your cost function varies a lot in this direction but relatively
very little in this direction, right. So you will have to start worrying about something known as
sloppiness. The sloppiness is a very important issue in biological systems. It has fundamental
implications for how easily you can estimate parameters or with what reliability you can fit

parameters.

It depends upon the model to some extent on the data. It is quite complex but is a very interesting
topic.

(Refer Slide Time: 14:39)

B Introduction to PyCRO
B PyGMO Algarithms and Exarmples

® Multi-objective Optimisation

In the next video ...

B Dyramic Modelling Recap

So in today's video, I hope you got a nice introduction to the very interesting software library
API called PyGMO. It is written in python but it is very efficient and very useful for performing
all kinds of, you know, GAs, right or evolutionary algorithms in general. So be it differential
evolution or genetic algorithms or evolution strategies and, or even simulated annealing and so

on.

And we looked at what are all the different algorithms that are implemented in PyGMO and a
few examples, code snippets, to tell you how you go about writing PyGMO code and I also
introduced you to this very interesting concept of multiobjective optimization and you should
read more about it because | only gave you a very brief introduction. In the next video, we are
essentially coming to the end of that big modelling. So I will give you a recap of the entire series

of lectures we have had on dynamic modelling.

