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Other Evolutionary Algorithms

So, in today's video, we will look at other evolutionary algorithms particularly we will look at a

very interesting algorithm known as the differential evolution, so this is a very powerful tool for

parameter  estimation in biological systems especially and it  is well  implemented in this tool

called PyGMO, which we will talk about in the next video and in today’s video, I will also talk to

you about implementing evolutionary algorithms, what are the aspects; various aspects that we

need to consider.

(Refer Slide Time: 00:48)

And we will also discuss as to when evolutionary algorithms are actually very useful as in when

do you give up on the other kinds of algorithms and go in for evolutionary algorithms, okay,

welcome back, let us continue with our study of some more evolutionary algorithms, to recap all

the evolutionary algorithms, this slide is titled genetic algorithms but all evolutionary algorithms

would fit this bill essentially, the evolve populations of solutions.

The representation will vary from one to the other and the key concepts remain the same, so you

can talk about population, chromosome, mutation, recombination or crossover, fitness function,



selection and so on, so we already looked at some of these things, let us just look at a few more

flavours of evolutionary algorithms.

(Refer Slide Time: 01:30)

So, one important algorithm is known as differential evolution, this is designed as a stochastic

parallel direct search method, so it is stochastic in that so, there is some randomness in how

different points are picked and so on and it is of course a direct search method and it can be very

nicely implemented in parallel, so thrives on a population of vectors, which can be independently

manipulated.

So,  which is  similar  to what  most  other  evolutionary  algorithms do or in  case even genetic

algorithms, right, so in genetic algorithms as well you have populations of bit vectors, here you

have populations of potentially numerical vectors, you have initial vector population which is

spread across the entire parameter space. So, you have a parameter space in r to the n, potentially,

right, so you have vectors that cover different parts of the space.

And now you need to come up with ways to do mutation and cross over, right, you need certain

random operators,  you  need  a  fitness  function,  you  need  a  selection  pressures  or  selection

strategies and so on. So, how do you do the mutation, right? So, one way of doing a mutation is

by adding some weighted difference between 2 vectors to a third vector, you pick 2 vectors at

random, you compute the difference between those 2 vectors.



And add that difference to a third vector, right, so some multiplied by f; some alpha, right, so you

weight that in some way, so add 5% of the difference, 20% of the difference to a third vector, you

repeat this multiple times, you get more children; more population and then for crossover, what

you do is; a little more simple, you do parameter mixing.

(Refer Slide Time: 03:28)

Or essentially, you pick a random from each, right, so you mix the 2 to get a third vector, let us

say this is 1, 2, 3, 4, 5, 6, 7, 8, I am just marking the positions, a, b, c, d, e, f, g, h, you might get

a vector that is 1, b, c, 4, 5, 6, g, h, right, you randomly picked from; so you mix the parameters

up, you can mix them in different ways, right, so this is the recombination operator in the case of

differential evolution.

So,  essentially  you  need  the  same thing,  you  need  2  or  more  if  you can  search  operators,

mutation, you can even think of this as global and local, right, 2 operators that look in 2 different

styles  on  the  search  space  that  you  have.  Will  it  depend,  right,  so  mutation;  you  cannot

necessarily map into map or local but if you look at recombination, a sort of trying to take in; so

in this case mutation will be more local in differential evolution.

Because  you  are  like  adding  the  difference  between  2  vectors  to  a  third  and  you  know

recombination could be more global in which because you are like picking a random pieces and



so on, were it really depends but neither of these would be purely global or purely local, right but

together they do 2 different types of search essentially, very simple, so let us call this vector

alpha, this vector beta.

So, you will say gamma is gamma + some fraction * alpha – beta, how do you do selection? You

can again use several strategies, usual recommended selection procedure here is greedy, so you

try to select more of the best solutions or pick the top k solutions and move on, right, this was the

original  differential  evolution that was proposed by Storn and Price in 1997, there are many

variances to it today.

(Refer Slide Time: 06:10)

Some  of  them work  very  efficiently  particularly,  in  case  of  biological  problems.  Evolution

strategies are also popular for solving these kinds of optimisation problems in general, the major

difference between evolution strategies and GA’s or de; differential evolution is that real numbers

are used instead of other data structures, right. See, if you see bit vector is actually a sort of a

data structures in some sense, right.

It represents something or it could even represent a circuit for all you know right, an electrical

circuit as we discussed earlier and the interesting part is there are strategy parameters, these are

the genes that affect the evolutionary process, so more biology in some sense, right, so these are

genes,  you  can  think  of  these  as  the  genes  that  control  the  rate  of  evolution  maybe  the



recombines the you know, enzymes involved in SOS response or DNA replication and so on,

right.

And  even  the  parameters  evolve,  so  your  mutation  rate  and  recombination  the  rate,  they

themselves  evolve,  so something like  that  and the genotype  adapts  to  alter  the  evolutionary

process  itself,  right,  so  the  whole  system keeps  evolving  at  every  point  of  time,  right.  So,

essentially, if you will see the overall template is the same for what is; if you scale back a few

steps, right, you said what are the different in the hierarchy of the algorithms.

(Refer Slide Time: 07:38)

We basically said GA’s, DE’s or DE evolution strategies whatever else, they all broadly come

under evolutionary algorithms, these all broadly come under maybe direct search algorithms, if

you see the template as the same for all direct search algorithms; be it stimulated annealing or

any of the other methods are actually have a few more methods listed a little later on, we will

come back to that. So, the recipe is the same and what is the recipe?

(Refer Slide Time: 08:14)



You start  with  an  initial  population,  maybe  you  know and  you  need  to  come  up  with  the

representation for the population that is the first catch, right, it is probably one of the hardest

steps,  right because this is where you need to think beyond that it  is  all  just  the recipe,  the

computationally, what is the hardest step; computing the fitness function over and over again

because you want to calculate the fitness of the entire population.

So, you need to compute the fitness function over and over again, so that is a problem, right, so

you can have trees and or other kinds of complex data structures, you can have Cartesian genetic

programming  that  something  I  mentioned  earlier  so on  and so  forth,  so  you may have,  for

scheduling you may have a very different kind of data structure, right, so you need to come up

with representation paradigms.
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And you need search  operators;  you can  have  macro  mutations,  so  large  changes  in  alleles

without recombination, so mutate several genes, several bits, right. Hybrid operators that you

know do not really have anything to do with evolution, you can have like a hill climbing operator

that will just you know increase the value in a particular direction, right, it does not have to truly

honour the evolutionary process.

We can have operations  for permutations,  very useful  in  case of travelling  sales  person and

problems such as those. Learning operators, where alter their chromosomes before application

based  on  some  parameters  and  so  on  and  evolving  operators  by  encoding  something  like

mutation probability into the chromosomal representation itself, right, so this is where we talked

about self-adapting chromosomes and so on.
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So, essentially you need operators right and there is a big library of possible operators to choose

from, another very simple operator is; so, this is a simple operator for, this is for the evolution

strategies very simple operator is let us say there is a parameter theta 1, just add a randomly

normally randomly distributed variable to it, it is already a search operator, so this is actually a

very simple search operator and evolution strategies use such simplistic search operators.

But you can draw it from any interesting distribution not necessarily just normal, so you can

have different  kinds of operators  as  well,  right  and yeah,  you had a  question,  “Professor –

student conversation starts”  so, what is the difference between learning and mutation, when

can you learn, you need a teacher, right, so you basically need something that tells you whether

you are doing well or not, you need some evaluation cycle, right.

So, like a classifier you need to basically let us say, you build a classifier, when do you say it has

learned, you basically test against some data and see that the performance has improved, after

you  have  added  some  more  data  to  the  training  kind  of  thing,  whereas  here  this  evolving

operators could just be arbitrary, let us say I have a chromosome that encodes along with all my

thetas and so on, it also encodes a hyper parameters, then like randomly just around, right.

I am going to randomly mutated, so maybe I mutated the hyper parameter instead of mutating

my parameter, the parameter we are trying to estimate here, so that is a possibility, whereas in a



sense  there  is  no direction,  whereas  learning will  try  to  proceed the  direction  of  improving

something. “Professor – student conversation ends.”

(Refer Slide Time: 12:12)

And selection, so you can try to you know replace worst or replace at random, you can have

tournament  selection,  you can have fitness proportionate  selection,  you can have elitism and

anything else  that  you can actually  come up with,  you can  use different  kinds  of  selection,

pressures or selection methods.

(Refer Slide Time: 12:37)

So, to summarise the main applications of GA’s or in; or evolutionary algorithms or in complex

multi objective optimisation problems, right so to be exam course timetables or any scheduling



problem  as  we  saw  or  in  computational  biology,  it  is  used  in  phylogenetic  trees,  multiple

sequence  alignment,  protein  folding,  identifying  coding  regions  and  proteins,  clustering

microarray data, for k- means clustering you can imagine that this would be very useful.

Because it is k- means clustering is again an optimisation problem, parameter optimisation for

kinetic  models  which  is  where  we started  looking at  it,  it  could  also be use for  things  like

electrical circuit design and so on.

(Refer Slide Time: 13:17)

Okay, so when to use evolutionary computation? They are often quite  useful,  what are their

strengths or what are the challenges; one major challenge or one thing that you have to usually

worry about is; you need to have a careful choice of representation operators and so on but is

very useful especially, when you do not understand the space, you have really a weird space, you

do not know what is going on in that space.

 

You do not know what is the gradient, you do not know what is the landscape looking like, GA’s

are useful, it might help understand the problem better, once you solve a problem using GA’s,

you may be able to extract some principles out of it that is a possibility but there is no reason to

really believe that GA approach is better than any other organisation technique,  so and often

times, although sometimes it might help you understand the problem better.



A lot of times,  you do not understand what is going on, it  is literally like a black box, you

through in some parameters something else comes out, they are good, you are happy but you do

not know you got there, so the choice of representation remains the biggest challenge and of

course, I already mention the black box issue and it is of course very expensive because you are

evaluating 100’s of 1000’s of solutions, fitness function evaluations, right.

(Refer Slide Time: 14:51)

A population size might be 100 and it might run for 10,000 generations and so you are looking at

a huge number of millions of fitness function calculations. Other related techniques again you

know similar recipes will be followed, gene expression programming, stimulated annealing, ant

colony optimisation, particle swarm optimisation, Tabu search, interactive evolution algorithms

and so on.

There are various flavours to evolution algorithms and all of these are useful for many kinds of

complex optimisation problems particularly, parameter estimation. So, if you look at parameter

estimation  invariably  in  any  paper  you  would  find  that  they  would  have  gone  beyond  the

standard (()) (15:25) Matlab reference search because it is just not good enough to work in large

spaces.
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Because the most important issue we have to worry about in large space is actually a curse, right,

it is called a curse of dimensionality, what is the curse of dimensionality? It is basically telling

you that there is an inherent problem in very high dimensional spaces, so it is a simple example,

let just say this is some k1and k2, you do not take this as a origin may be origin let us say

somewhere here, right.

So, I would say this is low k1, low k2 and this would be high k1, high k2 and this would be low

k2, high k2 and this would be low k1 high k2, to examine 4 combinations; to study 2 parameter

problem, you need about at least 4 regions to explore that is 2 to the 2, suppose you have k1, k2,

k20 or searching in R20 and you need 2 to the 20 regions to explore, you want at least one

representative from each region to understand what is happening to my system.

And this is already 1 million +, right and what happens if; we are talking about 50 parameters,

right, it will be, so 2 to the 50 will be > 10 to the 15, so if you go to the larger and larger problem

in the sense, you will quickly reach the number of atoms in the universe, right, so basically these

are very difficult problems to solve and it is an inherent problem, it is not that if you build much

better supercomputers tomorrow, you will be able to solve this problem, right.

It is a fundamental problem in such spaces, where you have very large number of parameters

such to explore or very large spaces to explore, right so this is something that you need to really



worry about. So, in practice the size of your parameter set, maximum some 20, 25, if you are

doing an unconstraint search but usually you start restricting the parameters, so I know that you

know, 30 < k1 < 3000, this is already a great thing.

Because you are restricted to 2 orders of magnitude only, 3 orders of magnitude, right or you

know that 0.1 < k2 < you know 10 to the 2, a few orders of magnitude and this is already going

to be very helpful, so typically all parameter estimations have to be very constrained otherwise,

there is no way you are going to get it, best thing is if I know that k3 approximately = 520, let us

say great.

(Refer Slide Time: 19:26)

So, it means that may be it is only + or -10 or something like that right, so if the tighter you

know certain parameters the better  it  is,  so these are some very good paper that you should

consider looking at especially, the first one. It is a; it is some nature review genetics finally and it

talks about also evolutionary algorithms, so it is a very long, it is a very nice, you know detailed

write up about several evolutionary algorithms.
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It  is  actually  a  shortest  paper  only 8,  9 pages  and but it  lists  every flavour  of evolutionary

algorithms.  In today's  video, I introduced you to this  very interesting evolutionary algorithm

known as differential evolution, there are many variants for DE as well and I also introduced to

you to how we go about implementing evolutionary algorithms, now what are the different kinds

of selection, methods or other kinds of search operators and so on.

And we also discuss as to when one actually goes in for evolutionary algorithms and then you

know the other kinds of algorithms are no longer useful and one has to resort to stochastic direct

search algorithms particularly, like evolutionary algorithms. In the next video, I will introduce

you to this very interesting tool called PyGMO, which is a Python based library for doing multi

objective optimisation and so on.

It supports various kinds of genetic algorithms and so on, so I will talk to you about what are all

the different kinds of algorithms that supports and some examples are you know how to we

actually use PyGMO for solving or estimating parameters and so on and also give you a brief

introduction to multi objective optimisation, what happens if you have more than one objective

to optimise.


