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In this video, we will continue with our discussion on genetic algorithms and importantly, we

will  look at  what are the challenges  in representing data so that it  is readily amenable for a

genetic algorithm and we will also look at an illustration or a simple example to see how one can

potentially use GAs and how they can, you know, lead to convergence to the desired minimum.
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Again, let me call this EAs, right. So this is a very interesting representation for a relatively

complex  system  which  is  called,  so  the  representation  is  Cartesian.  It  is  called  genetic

programming for evolvable hardware. So let us say you have a system like this. It is a 2*2 array

of gates, right. So I am just giving this, this is not you know, a very general example to what we

are studying here.

But it will give you an idea of how do you construct, creatively construct representations for a

difficult search problem. This is what you need to do if you are working with genetic algorithms,

right. So what do you do? So what gate is this? AND or NOR, NAND, right. So let us call these,

let us have a list of gates or AND, XOR, NAND, NOR. Any other gates commonly used. You

have XNOR I guess. NOT, yes.

I am trying to restrict myself to 2 input gates, right. This is input 2, this is input 3, this is input 4.

This is, I will call this 5, 6, 7, 8 and O1 and O2, something of this sort, right. So now I need a

representation. So I can go and evolve, let us say I want, should follow a particular truth table. So

I  am going  to  find  a  function  that  does,  I  am going  to  find  a  gate  arrangement  that  does

something, right.

So this is actually how people evolve certain very complex circuits. Here is a very interesting,

this  was done by Adrian Thompson back in 1995, right and what they found was evolution,



evolutionary algorithms were taking advantage of things that normal designers do not do because

it is, it is a more blind thing, right. So it essentially tries to tap into a very different portion of

design  space  even,  right  because  the  way, so in  fact  somebody else  was mentioning  to  me

recently, they should go and look up the NASA evolutionary design antenna.

It apparently looks very ugly but it is very effective. It has got a very weird shape because it was

evolutionary design person designed by a designer but the antenna is still very very effective

because well it was optimized very carefully. So how do you represent this? I can represent every

gate by, let us start with this. So I would say 1, 2 and then 3, 4 NAND, then 5, 6 OR, then 7, 8

NOR.

I could stick all these into a row, that is what we call a Cartesian representation and I will say

AND I will replace it by 2, OR I will replace it by 1, NAND I will replace it by 4, NOR I will

replace it by 5. So a representation for this gate would be, and my outputs are, so I will call this

O3, O4, O1 and O2. In fact, I do not even, yes, I need to just come up with some, right, so I

could call this 5 and 6 or whatever.

The what output goes into the next one, right. So I need to give this a number 2. So these are the

inputs that are going in here. This same input is also going here. So I would call, so this actually

will not be 7 8, this will be 7 4 and not 7 4, it will be 6 4. Is that right? So this is, I call these, so

just  think  up.  You  just  need  to  come up  with  your,  with,  you  know, a  systematic  rule  for

representing, right.

If you have an M cross N array, right. If I say 5, I know where it is. So if it is a 3 cross 3 array, I

know it will be in the second row second column, that will be 5, right. If it is a 6 cross 6 array, I

know it  will  be  in  the  first  row fourth  column,  something  like  that.  So  I  just  need a  long

representation which now says what is the input to each gate and what is the type of the gate.

Input input type of the gate, input input type of the gate and finally, what are the outputs. Now all

I  have  to  do  is,  I  can  just  go  and  mercilessly  change  things  here.  I  will  get  new  gate

configurations. I can simulate them and I can see which direct, am I getting a better function or



not. For that, what will I have to do? I have to do fitness and all that stuff.

(Refer Slide Time: 06:48)

So we will have to go back to all of these concepts.

“Professor - student conversation starts” (()) (06:50) you could, you could, you could. I will

now take output from the second gate itself, may be, I do not know. I could take any of this and

connect it to output. I may, I may just ignore this. (()) (07:09) if it does not matter (()) (07:11).

Yes, you just want (()) (07:13) to follow whatever true table you have set. I might want several

shift functions, meaning if I give B1 B2 B3 as input, I need to get B3 B1 B2 as output, that is all.

Any bunch of gates, any output, whatever does this job, I am happy with it. This is actually very

interesting if you go and look this up because if I, we did a study back in 2011 where we showed

that we can, this is something we discussed in the very end of the course. Then we talk about

robustness and evolvability. So we showed that we could actually design robust electrical circuits

as well.

So these are typically can be easily implemented on FPGAs. FPGAs are field programmable gate

arrays meaning they are not setting, you know, setting stone as an NAND gate or OR gate or

something like that.  Using a configuration string,  they can be dynamically reconfigured as a

NOR gate and NAND gate and so on. “Professor - student conversation ends.”



So you take this particular string potentially, you have to do lot more work than that and you feed

it to the FPGA. It will now take up assume this circuit. You change the string, it will assume a

different circuit. So it can reconfigure itself. So can you design a circuit that can easily from

making a just a small rewiring, convert itself from computing a circular shift to a right shift or

you know, you can even think of more harder functions, right.

So if you really want to extend, extend, extend this, can you build a reconfigurable robot because

it is a very popular application. There are some reconfigurable robots that people have built for

say deep sea exploration, right. There are some kind of (()) (08:50) has to seek under titanic, it

will just, you know, become, it will crawl and go. It will be walking as a (()) (08:56) but then it

has  some real  obstacle  in  the  way, it  will  reconfigure,  become a  reptile  and crawl through,

something like that.

So there is some example of this sort but basically how do you design such circuits? Because the

search  space  is  so  large,  you  have  to  really  resort  to  some very  intelligent  algorithms  and

evolution seems to work very well with the very large search space, right. That is, you know, sort

of the observation that we have from observing years of biology, right. Evolution seems to work

well in practice, right.

So why does it work? There is a selection pressure, right and there is some notion of fitness and

then you basically, you actually do not worry about how evolution happens in real life, right. You

might have heard on; see we basically mostly agree with the Darwinian theory of evolution.

There is also the Lamarckian theory of evolution. As far as GAs are concerned, they are as happy

with the Lamarckian theory as with the Darwinian theory as long as it can give you better results,

right.

That is all you really worry about. So if you look at this framework that we are talking about,

how do we go about and compute each of these things. So let us take another simple example. So

now I think you have some idea of how would you do for scheduling? You just need to establish

these operators and how would you do it for, you know, a bunch of electrical circuits.
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If we look at a very simple example, let us say I want to solve x square=9. You already know the

solution. Let us assume that the solution is only in integers, right. So I will have to now assemble

a bunch of candidate  solutions.  So x square=9, let  me say I  will  use 4 bits  to represent the

solution,  may be 3 are,  or  I  will  use 3 bits  to  represent  the solution,  right.  So my possible

solutions are these.

Many more, right. Let us just start with some subset of this. So I start my population size, I take

it as 4, right and the numbers I use are 000 001 100 111. We have carefully left out the solution

from this but let us say this is our initial population. Now what do you do? No before that. You

evolve. You, you mutate, right. So let us say I mutate this bit, right. So it becomes 001, 1 and let

us say here I mutate this bit, this will become 1, wait, I do not want to get to the solution.

Let us mutate this bit, so it becomes 101. No, no, no, you do not care. It is random. It is blind.

That is very important, right. So that comes back to the question that you were asking yesterday,

what is parallelisability. Just parallelly do this. Throw it to 100 course, just change it. You do not

care what is happening. All you care is, I will now generate some large number of individuals

and I can squash it to the original population size.

Finally, I have to somehow come back to N=4, right. I do whatever, right. So this 100 might



probably become 110 and 110 may become 011, right and let us do a few crossovers. Let us

crossover 001 and 100 and we might get a 101 again from that and let us cross 111 with 000, you

will get 110 let us say. You did a very small example, so you are not going to get in a variety.

First of all, your space has only 8 numbers, right but given this, so now we have 6 individuals,

squash it, in fact, you should, there is a very systematic way to do this.

You might actually end up with exactly 8 individuals or something like that. So you will end up

with 8 individuals, you do 2 mutations and 2 crossovers or something like that and including the

parents, you will have 8 individuals. Now you compute the fitness for each of these. What would

the fitness here be?

“Professor - student conversation starts” (()) (13:25) So may be something like, but closer to

0, higher the fitness. Closer to… because your best solution is x=3. So 3 square-n has the highest

fitness. So you may want to do 1/x or something or you can do - whatever. Let us just say 1/x,

right. “Professor - student conversation ends.”

So 1/x square-9 is my fitness value. So this is 1, so it will be 1/8 and I can take absolute value

also, it does not really matter. So this is, what is this? This is phi, you know. So 1/16. This is,

what is this? 6. So this is 1/27. This is 3, okay. You have infinity, I do not want this. Let us leave

this out, right because we want to do more iterations and this is again 1/16. This is again 1/27.

How do you pick the best solution now? How do you pick the new population now?

“Professor - student conversation starts” Parent also, you will have to evaluate. Yes, you have

to evaluate for the parent also. So this will be 1/9 for 000. 001 will be 1/8. 100 will 1/5 and 111

will be 1/40, right. So now I have all the finesses. Tell me one to pick. 100 (()) (14:59). 100 will

be 1/, 100 is 4, no, so 7, yes. Sir is the mutation possible with (()) (15:07) Why cannot we just

eliminate the (()) (15:17) My absolute solution.

That does not mean from… No why, why are you throwing away any information. So may be

hold on to your information. How do you do selection? How do you use the fitness to make a

selection? (()) (15:34) so one way you can do is, you go for what is known as an (()) (15:40)



selection, meaning what is the best guy here? 1/7 and you just make copies of this. This is one

way.

This is called (()) (15:57) selection. What is the problem with this? Is there a problem with this?

(()) (16:00) This is like as aggressive as hill climbing. You know, I will only take the best and

like I am forgetting any other variety that I have and so on and so forth, right.  So that is a

potential problem with this, right. “Professor - student conversation ends.”

On the other hand, you can do something called tournament selection. Meaning you pick a bunch

of solutions. What do I mean by bunch? It is a hyperparameter. You have to choose that bunch.

So what is the size of that bunch? That size could be 2, that size could be 1, that size could be 5.

So you pick a bunch of solutions and then you, you basically  have them play a tournament

against each other, like a fitness tournament and you pick 1 of them or 2 of them.

So you can choose something like that, right. That is one way. The best way is something known

as roulette or more technically may be Barabasi-Albert type, right. So you pick a solution in

probability proportional to its fitness. Higher the fitness, higher the probability. So you could

probably just normalize all of these. Think of these as your degrees for your Barabasi and you

would compute the probabilities, right.

So,  so  1/8/sigma  fitness  will  give  you  fitness  of  this.  So  you  pick  that  with  a  particular

probability. So better solutions, this is a very Darwinistic, right. So higher, better individuals with

higher fitness have higher probability of survival, survival of the fittest. So all of these will have

advantages  and  disadvantages.  And  I  can  give  a  name  to  each  of  those  things,  you  know,

somebody would have already come up with this strategy.

So there is no, I think, I want you to particularly embrace the concept here rather than the exact

algorithm. Because I do not think there is a genetic algorithm. There are genetic algorithms,

right. You can mix and match any of these recipes to come up with something that is best suited

to  your  problem.  What  kind  of  fitness,  I  mean,  sorry, fitness  is  the  one  thing  that  is  non-

negotiable, right?



Fitness is well defined by your, so here in our case e theta will be the, 1/e theta will be the fitness

or -e theta whatever, right. That will be your fitness. Where ever, but in this, in any, in every

different case for IPL, there will be a different kind of fitness. For some other TSP, there will be a

different kind of fitness, so on and so forth. So the important concept to remember is that you

need these operators that cause variation.  So how does this compare with what we asked off

yesterday.
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Ability to handle non-differentiable, non-linear multi-modal cost functions, parallelisability, few

control variables. What are your control variables?  “Professor - student conversation starts”

(()) (18:52) number of iterations.  That is number of, number of generations,  population size.

Population size. Method of selection. Okay, even before that. Mutation rate crossover. How often

do you mutate? how often do you crossover. 

Sir but mutation after every generation (()) (19:16). Yes, yes but how many individuals you will

mutate, right. So you typically like in biology you say, you say N new=10. What is N new=10

mean? 1 mutation is 10 individuals. Right. So for a population of size N, I will mutate 10 people.

So I will mutate 10 people every generation. N new=10 means. N new=1 is actually very, very

special case. N new=1 has very different evolution characteristic, evolution trajectories compared

to other things. “Professor - student conversation ends.”
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In  today's  video,  I  hope  you  got  an  introduction  to  the  challenges  that  are  involved  with

representation and some example representations and also an illustration of how we go about,

you know, solving the genetic  algorithm.  In the next  video,  I  will  introduce  you to another

evolutionary  algorithm  namely  differential  evolution  which  is  a  very  powerful  algorithm,

especially for handling biological datasets of our biological parameter estimation and so on and

we will also look at some of the challenges in implementing evolutionary algorithms and we will

discuss as to when EAs are actually useful.


