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In this video, let us continue with the fundamentals of mathematical modelling and focus on

model analysis and diagnosis like overfitting and very important aspects such as those as well

as what are the applications once you have a model in hand.
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Once you have a model, that is where all the hard work begins. In fact, constructing a model

is often very painstaking, you need to go through literature, try to identify what are all the

possible interactions you want to account for and so on and put together a bunch of equations.

Once you have a bunch of equations, you have to test them. You have to stress test them to

see,  are  they  consistent?  Are  you  getting  sensible  steady  states?  Are  you  getting  some

unbounded  response  which  never  happens  in  biology?  You  just  can’t  have  an  enzyme

synthesis, concentration curve that goes like this. There is always some saturation kinetics

that occurs. Is the system stable?

What  do  you  mean  by stability?  “Student  conversation” So,  you  give  it  a  small  delta

change, it will settle to a new state which is close to the original state or it might even return

to that state. I think this is a classic example, right?
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So, these are two bowls. You have a ball here and a ball here. The one on the left is stable, the

one on the right is not stable because you move this ball up, it will slide back here, here, here,

here and finally settle down. You just give this a small touch, it will basically roll away. So,

this could be an initial steady state but it is not at all stable right.

But in biology you typically have stable states. Very unlikely that you have something so

delicately balanced. One small change, it just blows up. Because biology is extremely very

often characterized by strong robustness and we will worry about definitions of robustness a



little  later  on  but  robustness  usually  means  the  insensitivity  to  a  particular  kind  of

perturbation.

But in biology you will see that a large number of perturbations are actually okay. The system

stays stable in the phase of many perturbations. Obviously, you know there is a magnitude

that you have to worry about, the kind and nature of perturbation you have to worry about

and so on but in comparison to engineering systems you will see that biological systems

demonstrate lots more stability and robustness which brings us to sensitivity and robustness.

(Refer Slide Time: 02:52)

What is the difference between stability and sensitivity? Stability is clear, right?  So, you

started an initial stage, you give a perturbation, it comes back right. Sensitivity is what is my

response for a push. If I give a small push to the ball, does it just fly out of the bowl? Or does

it just move a little and so on. And typically, we will worry about sensitivity the classic way

to mathematically define sensitivity will be. This is sensitivity.
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That’s it. This is what sensitivity is. We will look at it more closely later on. Typically, you

may want to define it like this to keep it dimensionless but basically it is the change in a

particular  read  out  to  a  particular  perturbation.  I  push  something,  I  do  something to  the

system, I raise the temperature by 1 degree Celsius, how does the rate of my reaction change?

How does everything else change? Or add a little more of enzyme, how does everything

change?

So, this is sensitivity and typically you want your system to show good sensitivity to your

parameters. Otherwise you know those parameters are meaningless. You change a parameter,

the system remains the same and parameter rather should not have been there in the first

place. You will look at all these in greater detail as we go on but the purpose of this lecture is

to introduce you to what kinds of things one worries about while building models.

And it is good to be aware of this whole thing when you start the modelling exercise itself.

Am I going to be able to test for stability? Is my model sensitive enough? Do I have good

data? All these kinds of things one has to start worrying about.
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Over-fitting. Another major challenge. What is over-fitting in a general scenario? “Student

conversation”
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So, one very good way to describe over-fitting is  you lose the ability to generalize.  You

basically fit the data too well. It is somewhat the equivalent as one colleague mentioned, it is

equivalent of memorizing the assignment numbers rather than just the assignment concepts.

So, you want to only learn the concepts from class, learn the problems that are discussed in

class.

But if you were to memorize the numbers then you are able to only solve the problem if it has

the same numbers. So, a classic example you may all see in for over-fitting is in case of

regression. You have a simple system like this and you want to build some sort of correlation.



There is y and there is x. So, you may think that this is a good correlative model to explain y

versus x.

Maybe this is another good model but this could also be a model but a really weird model

would be this. So, the problem with this model is that it perfectly reproduces the original data

but it might really, so when I get a new point, so for this x, I might have to predict this y but

this  might  predict  something  here  or  something  here  depending  upon  how  it  has  been

fluctuating right.

So, you have memorized the noise in the dataset as well  instead of just  the trend in the

dataset.  This  becomes  an important  thing  to  worry about  and this  has  very fundamental

implications. How big should your model be? How many parameters should you have? The

more parameters you have, you run a greater risk of over-fitting. But then there are so many

processes to describe. So, then I might need more parameters.

So, you have an interesting trade-off that needs to be arrived at. So, you need to worry about

all of these things.
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And always,  always,  always be aware of  the limitations of  any model  that  you use.  So,

Michaelis-Menten  will  work only in  certain  scenarios.  The system has  to  have  Freidrich

diffusion, the temperature of the system should not change. There are no other interfering

factors and so on and things like that. So, there are a number of assumptions that underlie

every single model and usually people gloss over them and ignore them and make mistakes.



A classic model that was used to study how a drug is distributed basically had this problem.

So, people just started using that model in all scenarios whereas it was only acceptable for

low  concentrations  of  drug  and  so  on.  When  you  extrapolate  something,  you  need  to

understand how far you can extrapolate. If you have data from t=1 to t=200 minutes may be

you can extrapolate it to t=240 minutes.

But you may not be able to extrapolate it to 10 days because you do not know how the curve

is going to change, how the other parameters are going to change as the simulation proceeds.
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Is your model unique? These are all very difficult sometimes almost bordering on philosophy

questions. Is there one model that can describe my system well enough? But better still, can

you invalidate hypothesis? This is in fact one of the most useful aspects of any modelling

exercise. You start with a hypothesis. you can’t prove it. Can you show that if you make these

assumptions the model breaks down?

The model cannot explain your reality then you may have in fact succeeded in invalidating

your hypothesis. Validating your hypothesis is a harder problem, maybe there is a case that

you have not examined where your model could break down so you may never be 100%

convinced about validating a hypothesis but you may be able to invalidate hypothesis more

easily. And this is just like whenever you write a computer program you want to make sure it

works in all scenarios.



So, you may have to stress test it. Does it give some weird response if you give some weird

inputs? So, you have to stress test your model particularly at some at what you may perceive

as the boundaries of your model right, for very low concentrations does it work or you know

maybe it just falsifies some assumptions so you should not be even considering it right.

So how does that work right and what are the best or worst cases and the biggest loftiest goal

of them all can you actually identify design principles underlying your system right. Using

model as a way to interrogate your system to finally understand the design of the system itself

right because as we discussed already the moment you commit to a model, you already have

certain hypothesis that you have committed to.

You  have  a  certain  mathematical  understanding  of  the  system,  given  this  mathematical

understanding can you extend it, can you you know understand oh this is how the system

works, I need for a system to show this behaviour it needs to have these kinds of connections,

these kinds of you know wiring between the different components that exist and so on or I

can  say if  I  find  2,  3  feedback loops  in  a  system it  is  always  going to  be stable  know

something like that.

Or if I do not find 2 feedback loops in a system, it is never going to be stable. You may be

able to come up with certain design principles of this sort right. These are basically principles

that you glean out of your modelling and why do we need to resort  a modeling for this

because  a  model  can  be  operated  under  several  conditions,  you  can  make  several

perturbations, you can make a very large number of what if questions with the model, answer

them with the model.

And  then  use  it  to  identify  okay is  this  making  sense,  oh  this  seems  to  be  the  overall

overarching principle underlying the system and so on.
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And  a  lot  of  times  you  may  end  up  with  dangerous  mistakes  such  as  these  right.  So

correlation does not always imply causation. There are cases where it can but it is a very

tenuous thing and you have to be careful. So this is a kind of funny thing which says that

bunnies are major causation for world peace right. So wherever you have bunnies you do not

find any conflicts or worse right which obviously does not make sense.

I think you had some very interesting correlations like that right so you know that number of

noble prizes is well correlated with per capita chocolate consumption right and so on right.
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So you have to be careful about those things and I think this is the cartoon that many of you

may be familiar with so this is exactly what we do not want to do today right, we can build

more  and  more  accurate  models  you  do  not  have  to  worry  about  building  a  you  know



spherical curve of uniform density ignoring the effects of gravity in a vacuum right. So we

want to go beyond these simplistic models.

And actually build realistic models that can see the final proof of the model is if it can predict

your reality, you throw it into a new situation it should be able to predict what happens right.

If it is unable to do that the model is not very useful right.
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And models need not always be complex, so this is the very, very simple model which says

how height and weight are correlated right or height and age or weight and age are correlated.

So if you see there are many curves that you see here, so this curve basically says so this says

that so only 5 percentile of the people are below this curve and only 5 percentile of the people

are above this curve.

So basically this is the curve where 90% of the population falls in right. So if this is the birth

weight, this is how the child is expected to evolve. If this is the birth height, this is how the

child is expected to evolve right reasonable I mean growth is such a complex thing right. You

know how much food the child takes, how much activity he or she has, what is the genetic

makeup, what is the nutrition of the parent.

In fact, there are projects that are carefully looking at these as well but beyond all of these

you can build a simplistic model but well the model may not be very useful right. It could just

be wrong as some people say and simple models are easier to understand and maybe more



tractable but  they may not always be helpful,  you may compulsorily need to build more

complex models right.

What  will  decide  whether  you  need  a  simple  model  or  a  complex model?  “Professor -

student  conversation  starts.” Exactly,  right  it  is  always  what  drives  modelling  is  the

question you want to finally answer that is always the prime thing, you should always keep

that in mind right  “Professor - student conversation ends.” Other things are also so you

may want to have you know lofty goal but you may never have the data that helps you answer

those questions given that case you cannot even build the model right.

So that comes back to your point right but always what decides how you want to model a

system is what you want to answer in the end, you want to answer a simple yes no question,

does  this  enzyme affect  this  reaction or  not,  I  would build a  completely different  model

versus is a 10% increase in this enzyme going to afford a 15% increase in the rate of the

reaction right, that is going to demand an entirely different modelling scheme.
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So this is a kind of overview of what we discussed so far. So you need to first look at what

are the goals of the modelling exercise, what are your available inputs and do some initial

exploration right and then choose a model this is where the distinction between the science

and the art are blurred right, so is modeling a science or modelling an art right. It is an open

question right.



It is a science in some sense but then there is lot of subjectivity to it which becomes an art in

some sense right. So what are the aspects of model design you need to worry about, there are

certain  variables,  what  are  their  interactions,  what  are  the  equations  that  connect  these

variables and represent the interactions, what are the parameter values and so on and then

study the model.

Is it consistent, is it reasonable, does it have sensible steady states, if it is stable, is it able to

give you reliable responses compared to what you observe in experiments and so on and the

use of the model that is what we all are in for right. Can you test a hypothesis, can you

simulate unused scenario, can you predict the future behaviour of the model so on and so

forth right?

So this is you know in sense a broad overview of the basic aspects of modelling right and we

typically talk about modelling and simulation together right. What is modelling and what is

simulation? “Professor - student conversation starts.” In a sense right so building a model

is basically writing down on coding up a large set of mathematical equations that represents

certain interactions in a system crudely speaking.

Simulation is basically running the model and asking all your what if questions. The most

important aspect of a simulation is that it will compress time and or space right. You can talk

about see it does not take 3 hours to simulate a Michaelis-Menten system for 3 hours right. So

it  basically can  compress  time and you can  ask very interesting  questions.  “Professor -

student conversation ends.”
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So what is the simulation? It is the manipulation of a model in such a way that it operates on

time or space to compress it and most importantly help us perceive interactions that were

otherwise not  visible  right  because you have compressed it,  you can actually see certain

interactions that you were not able to observe otherwise.

(Refer Slide Time: 17:15)

So  why  simulate,  you  want  to  investigate  the  detailed  dynamics  of  the  system,  most

importantly and practically always  you want  to  ask a  lot  of  what  if  questions  about  the

system, what if this happens, what if the enzyme concentration is doubled and so on. Again

develop hypothesis, models, theories and so on. Actually substitute experiments and a very

useful pedagogical tool, very helpful for me to teach a class such as this right.



We  will  simulate  several  things,  we  will  simulate  interactions  between  enzymes  and

substrates, we will simulate interactions between metabolites in a cell, we will simulate how a

network changes if you change various properties of a network and so on right, how does the

connectivity of a network change as you change certain parameters in a network so on and so

forth. So let us discuss all of this in light of a nice example.
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So  in  today’s  video,  we  have  looked  at  model  analysis  and  diagnosis  as  well  as  the

applications of models and in the next video we will revisit the SIR model and take a closer

look in terms of you know diagram and the equations, the parameters involved and so on

which will help fix several of these ideas that we have discussed in the last few videos.


