
Computational Systems Biology
Karthik Raman

Department of Biotechnology
Indian Institute of Technology - Madras

Lecture – 43
Methods for Parameter Estimation

(Refer Slide Time: 00:11)

From this video onwards, we will start a series of videos where we study methods for parameter

estimation. So these are essentially methods to tackle high dimensional optimization problem.

They could  be  multi-objective.  In  most  cases,  we do not  use a  multi-objective  optimization

function but in this lecture,  I will introduce you to the methods of parameter estimation and

convince you that gradient-based methods and other methods.

Other standard methods are not entirely useful for parameter estimation for biological networks

and  move  over  to  direct  search  algorithms  which  are  the  most  commonly  used  family  of

algorithms for estimating parameters.

(Refer Slide Time: 00:51)



So let  us now look at  the methods for parameter  estimation.  So there are many methods of

parameter  estimation  and  we  are  obviously  more  interested  in  the  non-linear,  you  know,

optimization algorithms, right because we have a quite a non-linear system.

(Refer Slide Time: 01:08)

So there are methods based on integrated differential equations. There are methods that involve

slope estimation. You want to typically constrain the parameter search space in your analysis and

there are also methods that involve gradient-based, that involve the gradient computations and so

on but if you see most of these algorithms are not very applicable to biological datasets, okay.

Everything involves integrating of differential equations but you really cannot use.



And we will  constrain  parameter  space but  basically  gradient-based algorithms are not  very

easily usable in biological datasets because the, it is very expensive to compute the gradient,

right. So at this point just step back and think of what do we mean by computing the gradient?

What is it that you are going to compute the gradient for and what does it entail. True. So that is

the gradient. What is the direction in which there is a maximum delta in your function? What is

the function?

“Professor - student conversation starts” Sir, the Cost function. The cost function. “Professor

- student conversation ends.”

(Refer Slide Time: 02:20)

So remember the cost function involves, the cost function involves your, the cost function we

said was non-linear and the recap, let us call it some error e of theta, the theta is a vector. This is

basically x measured, i-x predicted, i of theta... something of this sort, right. So now how do you

compute this prediction?

“Professor - student conversation starts” You have a model, form of the model. What is the

form of the model. The differential (()) (03:19). So it is going to be dx/dt is f of x,t or rather... Is

it right? So this involves? Theta. Theta, a parameter subset. Yes, but, okay. “Professor - student

conversation ends.” Right but look at the problem here. How do you know, you want x of t. So

from this to get x of t, you need to integrate numerically.



“Professor  -  student  conversation  starts” (())  (04:04)  “Professor  -  student  conversation

ends.”  Which is expensive. So let us look at this. You do not have these time courses, right.

What you actually have are some points. “Professor - student conversation starts” Sir I know

the initial condition. Let us say you know the initial condition as well, right but you need to

basically integrate this first of all. (()) (05:05) You know, so you will basically guess a theta and

integrate it. 

So for any given theta, you perform an integration and then you compute, well, you will compute

the  curve  point,  the  prediction.  Yes?  So  if  theta  is  constant,  if  parameters  are  constant,

parameters,  why do you say they are constant  for  some value.  Okay. In that  case,  you will

integrate once. Yes. Having theta same, after integrating, I will just substitute theta. You do not

have to take it again and again. 

You will just integrate with adding theta some value. No because you are doing (()) (05:52) you

have to actually do that because, it is a good point, which is like you know what you corrected

me here is quite important, right. I just said f of x, t is actually f of x, t, theta. When you write the

ODEs, you will be passing, it is not that you will have a function that has the integrated symbolic

version of the ODEs where you can just plug in the thetas. 

So  you  have  to  basically  stick  in  this  theta  into  the  ODE function  and then  pass  it  to  the

integrator, like ODE 23S or ODE 15S or something like that. So that does not happen. So that is,

that is what actually makes it more expensive. One of the things that make it more expensive. Do

you understand? Not convinced. So, maybe we should look at the examples, right. That is where

the, but if you go back to what we discussed in the previous class, so we said there will be an,

and, and you will basically inside of this function, you will run ODE23S of at and you know, x, d

initial value and all that.

So in fact, theta will also become an additional input here. But theta is just a value right. It is not

going to judge the time or it is not going to change with any... Yes, but it is what the estimator

keeps changing.  Okay. So the parameter  estimator  will,  first  take a guess of theta  0,  it  will



compute e, right. It will check how good e is. Then it will go to theta 1, hopefully by gradient but

let us see.

We were trying to say how difficult  gradient  is  because you, you basically  have to do delta

e/delta theta. You have to explore all possible... It is very difficult. So, you can explore it but you

can imagine how expansive this is, right. So computing the cost function is expansive. It involves

how many integrations? (()) (08:26) Many, yes. “Professor - student conversation ends.”

It depends upon the number of states and so on, right. So it becomes very painful. So if you have

2-3 curves, you have to make 2-3 integrations in the first place and it also depends upon the kind

of data that you have, right. Your data material is something like, let me give you a different

example.  But  you are familiar  with this  kind of  dataset.  We will  be looking at  it  since the

previous class.

One difference is, if I say I did something here. Let us say, I added a drug. So then I have to stop

the integration until  this  point,  change an initial  condition and integrate  again.  So I  have to

essentially do multiple integrations to basically compute, I want to compute the predicted value

at this point, predicted value at this point, predicted value at this point and this point. For just

computing 4 points, I might need 2 integrations and extend this to the number of species I have

and so on.

So it can rapidly become very, very expansive, right. So this is a practical side of things that you

need to  understand.  So it  is  a  difficult  preposition.  Which is  why you do not  want  to  ever

compute the gradient. If you cannot compute the gradient, the next best option you have is, guess

work. Random search or better  search, right and this is what is captured under direct search

algorithms or, you know, many of these are also stochastic search algorithms. 

They are stochastic in that you do not search the same bay each time. The model in which you

explore the parameter space varies in each iteration. “Professor - student conversation starts”

Given  the  search  algorithms,  you  are  going  to  (())  (10:39)  Yes,  yes.  “Professor  -  student

conversation ends.”  So every cost function evaluation requires many integrations but so for



gradient, you require several, at each point you may have to compute the gradient that will add to

the cost, right. So that is why you do not go in for gradient. Was that your question?

(Refer Slide Time: 00:00)

So most real life cost functions like the ones we will use in biology are non-linear and non-

differentiable,  right.  Well  you can  numerically  differentiate  them but,  so you cannot  usually

compute or use gradient information. So all the methods that do not use gradient information are

broadly grouped under direct search methods and central aspect of all direct search methods is

the same.

You have a strategy to vary the parameters and a strategy to accept or reject a new parameter.

The logic is very simple. You start with a theta 0, you compute a cost function. You then either

use this cost function or whatever to compute another theta 1 and then is this good or not, right?

So usually how it works is, you start with theta 0, go to theta 1. From theta 1, you might either go

back here or go to theta 2. From theta 2, you might either go back here or go to theta 3.

“Professor - student conversation starts” But does this take most if then compared to gradient,

gradient-based  algorithms.  You  still  have  so  many  function  computations  to  perform,  right.

Gradient at each step involves much higher computation. (()) (12:23) you will go in the opposite

direction (()) (12:29) to keep evaluating (()) (12:33) but you, if you are taking a wrong state,

again you will come back to previous step, again you will evaluate.



Reaching the point (()) (12:43). So in practice, I think, these work quite well because the gradient

computations can,  can be quite expensive,  right.  So which,  which direction do you compute

gradient in? Sir, we will just compute the gradient of the function (()) (13:03). We will take the

direction opposite to the gradient of function. No, no. But in, along which, so you have, you are

in n-dimensional parameter space, right.

How will you compute the gradient in that space? (()) (13:18) but the convergence state will be

very high. It will not be that much converging. For a non-linear system, we cannot have gradient,

we cannot rely on gradient. How will you compute gradient? So you will compute x of some. I

will say theta parameter vector. y of x, y of theta+delta theta-y of theta/delta theta, right. What is

delta theta?

Which direction? (()) (13:56) In all directions. Or you have to go in every possible direction, that

is why the problem comes. (()) (14:03) that means you take the maximum and then how much to

go? Which direction? What do you mean, just to grad? It will give you 1 direction and then you

go  in  the  opposite  direction.  No  matter  how  many  directions  you  have.  But  you  have  to

numerically compute grad, right.

See in a, this is how you numerically compute grad. So which means you have to figure out

which, what is this delta theta. That gives you the maximum. (()) (14:27) may not guarantee

optimality, that is what I am saying. If you, we use... Anyway, I think that is your optimality.

Even directions also does not guarantee you optimality. But Gauss-New, if we use Gauss-Newton

project, as you, system has quadratic locally, that will go towards single step to the center of that

ellipse but in, in this method, (()) (14:57) you do not have that.

You cannot have that, because it will assume the, it will (()) (15:05) See how do you numerically

compute the gradient? (()) (15:08) no, no, numerically computing, we can, oh yes. (()) (15:19)

That is how it fails. Is not it? (()) (15:31) It is unlikely to get hold of the local (()) (15:45) but in

direction search, you have no such restriction, right. So that is only (()) (15:56) or something. Let

us get to that. Let us get to that in a moment. “Professor - student conversation ends.”



So how do these methods work? So this central aspect we said was, there is a strategy to vary

parameter vector and a strategy to accept or reject a new parameter vector.

(Refer Slide Time: 16:11)

Once a variation is generated, how do you make the decision? You need to make a decision or

should I go in this direction or should I go in the other direction, right. How do I come up with

that decision? One way is always accepting a direction where I have reduced cost, right. That is

what we normally call hill climbing or actually hill descending but is usually called hill climbing.

So always go in the direction which takes you towards the maximum. So that would be hill

climbing, okay. So new parameter is accepted if and only if it reduces, improves the value of the

cost function.  The Greedy decision process converges fairly  fast  but has the obvious risk of

getting stuck in a local minimum or maximum.

(Refer Slide Time: 17:05)



So let us look at a, slightly, right. This function has a clear local global minimum, right. This is

the global minimum. But the problem if you start with a hill climber, let us say you start here,

hill climber or descender, let us use the terms interchangeably. You will go here; you will go

here. Even here, say I were to zoom in, if you are at this point. You move in this direction, cost

value increases.

You move in this direction, cost value increases. So this is the local minimum and you are very

likely  to  get  stuck here or you can come and get  stuck here.  You go in  this  direction,  cost

increases. You go in this direction, cost increases. So you are at a local minimum but what you

want to get here? How do you get here? So one thing to do is, you have to somehow kick this out

of local minima, right.

So one obvious option is you can start exploring at different points. May be you start here, you

immediately  land  here,  right.  But  the  problem is,  this  is  1-dimension.  This  is  1-dimension,

remember. I am just showing you the value of some x as theta changes. So the problem is in

higher dimensions, it can get really difficult. You will have many more; between every minima,

you will have a few maxima.

Between every few maxima, you will have a few minima. It just really crazy landscapes can exist

in high dimensions. How do you handle it? It becomes very hard. And there are many techniques



which  are  inherently  parallel  in  searching,  right.  Like  genetic  algorithms  and  evolutionary

strategies.  We will  try  to  talk  about  them and they  have  some built  in  safeguards  to  avoid

misconvergence.

This is what we would call a misconvergence. You go to a wrong minimum. You wanted this but

you got here, right. So how do you avoid these. So one way we suggested was, you do a lots of

parallel search but many of the algorithms have this parallel search built in as we will see. And

we are running several vectors simultaneously, you can get superior estimations and they can

help escape the local minima.

(Refer Slide Time: 20:12)

So what are the desirable characteristics, right. You want the ability to handle non-differential,

non-linear, multi-modal cost functions, right. Cost functions essentially very badly behave as you

would  normally  observe  in  biology  because  the  systems  are  highly  non-linear.  It  should  be

parallelisable because we are going to estimating the cost function too many times. So you want

the function to be parallelisable in some way.

The algorithm is of use meaning you need few control variables to steer the minimization. What

are  these?  These  are  what  one would call  as  hyperparameters.  They are parameters  of  your

estimation  algorithm.  So  how  do  you,  your  estimation  algorithm  itself  will  have  certain

parameters. For example, in a hill climbing algorithm, your parameter will be how many random



searches should I do or how many initial cases from which I should start, right.

Although that is not the best example, you will see better examples for hyperparameters when we

look at more complex algorithms and these variable should be easy to chose. You do not want to

spend a lot of time tuning your algorithm. You have to tune the algorithm by picking the right set

of  hyperparameters,  right  and  you  it  should  have  good  convergence  properties  and  ideally

consistent convergence to global maximum or global minimum, across runs, right.

So only if I started a particular, it is not that happens even for hill climbing, right. If I start at this

X0, hill climbing will happily converge to this minimum whereas if I start at this X0, it will just

converge here, right. So it is not reproducible. But obviously this is our wish list. So it is not

necessary that there is 1 algorithm that will satisfy everything in this wish list. 

So again, depending upon the scenario, depending upon the problem at hand, you may want to

prioritize 1 or more of these features compared to the others. So what are the features you would

like to prioritize.

(Refer Slide Time: 22:16)

So there are some classic methods of direct search which involves Hooke-Jeeves pattern search

and your Matlab fminsearch which is called Nelder-Mead simplex. So this, this is direct search,

so much as it does not use gradient information. It is not stochastic. So what it does is, it tries to



explore a particular direction. If the direction looks good, it will go faster in the direction. If the

direction is bad, it will reflect to an opposite direction and so on.

So you should really try to look at the documentation of fminsearch and you can run fminsearch

with something like a verbos mode. It will tell you I did a contraction, I did a reflection, I did an

expansion, those kinds of things. So you will know exactly how the algorithm is proceeding and

where is it getting stuck in the, in the parameter space.

(Refer Slide Time: 23:04)

So  in  this  lecture,  you  had  an,  you  had  an  introduction  to  the  basic  parameter  estimation

algorithms and I also gave you the generic recipe for direct search algorithms, right. What are all

the classic, so you want to have an initial X0 and how you go about finding the next point and

whether or not you reject it and how do you terminate the optimization. In the next video, we

will start looking at some important direct-search algorithms or stochastic search algorithms such

as simulated annealing and genetic algorithms.


