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In  today's  video,  let  us  continue  with  network  models  and look  at  2  interesting  real  world

network models, namely small-world networks or also known as Watts-Strogatz networks and

power-law networks which was first proposed by Barabasi and Albert in 1999.
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What do you find in the real world? You find a lot of clusters, right. You always have this notion

of a small-world, right. You say that you know it is a small-world because you met somebody

from some other walk of life and so on. So what Watts and Strogatz suggested was? They had a

way  to  build  networks  such  that  they  had  some  interesting  properties  compared  to  random

networks.

So they started with the regular network as you see here. So this is essentially what they call a

regular lattice. It is very regular. You know what a regular graph is, right? So every node has the

same degree and so on. So here it a similar, you have a very set pattern of connections, right. So

think of this as a, you know, a round table where everybody knows 2 people to the right and 2

people to the left, right and then what they started doing was?

They started rewiring these networks with some probability. So on the left hand side, this regular

network is 0 probability, right and then you slowly start rewiring the network. When you have a

small probability of rewiring, you will change a few adjust in the graph. When you have a very

high probability of rewiring, you basically change almost every edge in the graph. So what you

do is, you incrementally make the network more and more disordered in some sense.

But what you find is, between the extreme of p=0 and the other extreme of p=1, you find some

very interesting properties what is called the small-world. So what, what is interesting about



small-world networks? So they find that small-world networks exhibit very high clustering and

much lower path lengths and in fact, low path lengths almost on the order of what you find in the

random network.

But  the  clustering  is  much much higher  than what  you see in  a  random network,  right.  So

quoting  the  paper,  "in  both  ER random graph  and  the  small-world  model,  the  connectivity

distribution  peaks  at  an  average  value  and  decays  exponentially.  Such  networks  are  called

exponential  networks  or  homogeneous  networks  because  each  node  has  roughly  the  same

number of connections."

So  how  will  you  say,  how  will  you  make  a  comment  like  my  network  has  much  higher

clustering,  not  random or  my  network  has  approximately  the  same  path  length  as  random

networks. So what you need to do is given a particular small-world network, you build an equal

sized  random network and you compare  the  properties  and obviously you do not  build  one

random networks but you build like 100s or 1000s of random networks and then you compare

the average properties.

(Refer Slide Time: 03:35)

So  this  comes  back  to  some  sort  of  classic  hypothesis  testing.  Let  us  look  at  small-world

networks. So this is usually called WS, Watts-Strogatz, 1998, right. So we say that, how would I

substantiate these. So we say that the characteristic path length of these networks is more or less



in the range, in the ball park of random networks but the clustering coefficient happens to be

much much higher than for random networks.

So  to  prove  this,  let  us  say  I  have  a  WS  graph  with  N  nodes  and  E  edges.  I  create  the

corresponding ER graph with N nodes and E edges and/or rather I  would make some 1000

realizations of this graph, ER graph, right and make a plot. I would plot let us say the average,

the characteristic path length, right. So this is basically some probability or like this, essentially a

histogram and this is the average path length.

How will this  graph look like? It  will be normally distributed.  It will  get a nice bell-shaped

curve, right. Now the question is where does, so this is your ER path length. The question is

where does your WS path length lie? So this will have let us say this gives you a number LWS,

where does that lie? You will find that that lies somewhere in this zone. So nothing surprising,

nothing interesting out there, right. It is not statistically very different from your random path

lengths.

“Professor - student conversation starts” (()) (06:04). Plot of what? Plot to LWS. LWS is not a

plot. LWS is a point, right. It is one network we have. Okay, okay. Right LWS is one network,

corresponds to one network and I am plotting on the LER distribution. LER, I have 1000s of,

1000 networks here and this is the histogram corresponding to that, right. “Professor - student

conversation ends.”

Now I take these 1000 realizations and try to get the clustering coefficient as well, right. The

average network clustering coefficient. “Professor - student conversation starts” Prem? These

1000  realizations,  ER  are  made  for  1000  derivatives  of  same  probability  and...  Same

probabilities, same probability, right, because you will get some variation, right.  “Professor -

student conversation ends.”

So you need to get some, so this is why would, this is essentially a bootstrapping to basically try

and understand what is the, you know, distribution of the test statistic that you want, right. From

one network you will get one value but if you bootstrap, you will get a bunch of value. So you



know what  is  the  distribution  of  your  statistic  of  interest  and then  you see where  your  test

statistic falls but that will not, they will not be comparable to your NE network, right.

If you take different probabilities, it means that even if you keep the node same, the edges will be

changing, right. See E is roughly pN choose 2, right. If p is the probability of random edge in the

ER graph, E is essentially pN choose 2, right. So now if I take these 1000 realizations and I plot

the clustering coefficient. So I will call this CER. I will again get a curve like this, right. This is

just a histogram.

So this is some probability or frequency count. Where does CWS fall now? You will find that

CWS falls at the tail of this distribution. Why? It is not easy to answer. You have to see it for

yourself but you basically find that if you take this kind of a regular network, start rewiring it in

this fashion, you find a good amount of clustering, that will give you a clustering coefficient that

is substantially higher than random graphs.
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So let us look at an example quickly. So these Watts and Strogatz in their paper, classic paper,

they studied 3 different kinds of networks. The first one was a film actor network, right, where

the nodes are film actors and the edges correspond to movies where they acted together, right and

the next one is a power grid where nodes are power stations and edge is basically corresponding

to power lines and so on.



The third network they looked at was the C elegans neuron network, neuronal network. So a

network of neurons in C elegans and what do we find? L actual. This is the, this is the same as

the LWS that I was talking to you, right. This is LWS and this is LER and you say they are all the

same  order  of  magnitude.  There  is  obviously  some  variation  but  it  is  slightly  higher

approximately the same order of magnitude, that is as they say here but look at the clustering

coefficient.

They find the random clustering coefficient is almost infinitesimally small but this is massive,

okay. So this 0.79 versus 0.0027. So if you want to have a visual representation of that, it would

be the equivalent of having a graph like this and having a real value somewhere here, right. So

this is a graph with mean=0.0027 and your real value of some 0.79 is somewhere here, right. So

it is completely outside your distribution which is, which means it will be extreme, right.

Which means obviously that it is extremely statistically significant. So if you want to compute a

p value, it will basically be, mathematically it will be your less than epsilon, right. It will be

essentially 0 because you find that there are no, no reading from your, from your observations

that comes anywhere close to your real.

So when you see these 3 networks are very different sizes, so the film actor network had 225,000

nodes.  Power grid had about  5000 nodes and C elegans had about 300 nodes with different

average degrees. So all 3 networks show the small-world phenomenon where L is somewhat

greater than but still equal to L random but C is much much higher than random.
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So this was a very useful observation and Watts  wrote a very interesting book on this topic

known as Six Degrees. It is worth the read if you are interested. But then scientist found that

most real networks look different. Many real networks, a lot of real networks, so you did see that

the film actor network or the C elegance neuronal network does follow the small-world kind of

distribution but you find that many real networks have a completely different distribution, right.

How do they look like?

(Refer Slide Time: 11:53)

So these are all different kinds. So some real networks fall into this class. No real network will

fall into the random class practically, right. So that is like a null model that you want to always

compare against and see how different you are and so on but real networks will fall into the



small-world class or what we call the scale-free or power-law class or have a mixture of the 2,

right or it will have different behaviours in different zones.

So you will never see a perfect degree distribution. We will look at it shortly. So real networks

have a very interesting degree distribution that looks like this. What does this mean? Let us look

at 2 points in this degree distribution and let me say this is 0.7, let me say this is 0.1 and may be

let me say this is about 2 and this is 100. So what you have is most of your nodes are boring.

They have a degree of like less than 1 or 2, right.

So 70% of your nodes lie in this region, right but about 10% of your nodes or may be even less

than that lie in this region where they have 100 links. So typically you will get a network that

looks like this. What you have here, most of your nodes have degree of 1 or 2 but you have these

2 nodes which have very high degree. So these are your hubs. So if you translate it this to a log

log plot, would essentially get a straight line.

So this is log pk, this is log k or p of k is proportional to k with a -gamma. So this is called a

power law, right and if you take p of alpha k, that is going to be again some alpha alpha dash k to

the -,  no. So this is why it is called scale-free.  If you scale k, right, the behaviour does not

change.  This  is  called,  so  I  prefer  to  call  them  power-law  networks  rather  than  scale-free

networks but these networks have a very interesting property. What is that property?
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They have been created by growing a network. You can actually create these networks by using

what is known as the rich get richer model or what is more scientifically  called preferential

attachment. So you preferentially attach nodes to nodes that are already rich. Rich in terms of

degree, right. So you prefer to attach to a node that already has a higher number of edges. So if

you were to grow this network.

Let us say you start off in this fashion, you start with a network that looks like this, whenever

you have a third node incoming, it will connect to the equal probability to either of those. When

you have a fourth node, the probability of connecting to these nodes is 0.25, 0.5, 0.25. So let us

say it connects to this. Now the probabilities will become even more different. So this is going to

be 1, 3 and 1, right. So your probabilities of connecting to these will become alpha, 3 alpha and

alpha, right or essentially 0.2, 0.6 and 0.2, okay. So may be the node connects here.

The next incoming nodes connect here, here, here, here and as you start growing this network,

you will  find that  you end up with  a  power-law degree distribution  of  p  of  k  versus  k.  So

basically  you  can  generate  these  networks  using  a  power-law,  right.  So  the  preferential

attachment model generates power-law networks.

“Professor - student conversation starts” Why the nodes attach to the nodes that have already

(()) (17:24). Well it is, there is no why to that. If you follow this method of generating networks,



you end up with a power-law network that is the way to look at it, right. It turns out, so probably

this is how real networks grow, right. So if you look at a classic example in this regard is the

internet router network or even the worldwide web, right.

So you see that they just have that a lots more links are more likely to get more links than pages

that have very few links. They remain with very few links, right. So when a new site comes in, it

will attach, it will connect with higher probability to already popular websites and so on, right.

So this kind of behaviour is seems to be present in many real systems.  “Professor - student

conversation ends.”

But in practice, you may not find this exact perfect power-law but you will find some, some

deviation, right. This also looks linear almost but you will essentially see something like this or

you know, different flavours of this, right but you can still say that in this zone, I have like a

proper power-law but then there is a rapid fall of our whatever or it remains like in a little flatter,

different kinds of behaviours can be seen in real networks.

So you want to see, unfortunately there came about a big obsession for power-law networks. This

classic paper on power-laws was published in 1999. After that everybody started publishing a

paper saying I have a power-law network, right but you have to actually do a statistical test. Can

you really make a proper fit of this sort, right? With what accuracy can you make a fit of the

form pk is some alpha * k to the -gamma, right and what are your values of gamma, right?

So there is a, there is a useful tool that was realised by Aaron Clauset for Matlab. I think the tool

is something like pl fit or something like that which essentially tells you if you have a power-law

network. It will give you a p value for the confidence in your statistics and so on. So you find the

networks generated by this model have a power-law degree distribution with gamma=3 and you

find that scale-free networks with 2 < gamma < 3 which is commonly observed in biological

domain are ultra-small with a characteristic path length that is very, very small, right.

So it is log log N which is significantly smaller than that of random networks, okay. So you can

imagine, right, if you have a network like this, it is kind of very easy to most all these nodes



connect to a hub and from this hub may be you also have connections like this, right. So from

this hub, it is very easy to go to this hub or any other node.

So your  L Barabasi-Albert  is  approximately  log log N which is  a  very small  value.  Well  it

depends, right. Hubs are very important nodes. So you want to target hubs. So they have higher

centrality measures, obviously they have very high degree and so on. We will look at some of

these properties may be in the afternoon.

(Refer Slide Time: 20:49)

So Barabasi has a very good book which is called Linked. So the other book says that every

network in real life is, you know, can be seen as a small-world network and Barabasi would

argue  that  most  real-world  networks  are  power-law networks  and reality  lies  somewhere  in

between, okay. So welcome back. 

So we were looking at network models and the third network model that we were looking at was

the power-law network model and this was a very nice book that was written on the power-law

networks and I think you should try to take a look at both these books, both, six degrees by

Duncan Watts and Linked by Barabasi.
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So to compare small-world and power-law. So small world one would call it as egalitarian, right.

So  it  is  uniform distribution  of  resources  in  some  sense  whereas  power-law  has  hubs  and

resources, right. So there are certain hub nodes which have a very high degree of connectivity

and there are many nodes which have very low degree of connectivity and small-world networks

do not have the concept of network growth.

Whereas in power-law, there is growth by preferential attachment and you have local clusters and

distant links in the small-world and you have distant link as we saw in the regular lattice. We will

take a closure look at the regular lattice again and what happens under attack that is something

that we need to look at. So we will look at that and in all, in both networks, you have small

average node-to-node distance, right.
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So before we look at biological networks, let us just refresh some concepts. So how does the

small-world network look like? Something like this, right. This is a regular lattice where every

node is connected to and so on. I may have missed a few edges but let us look at a regular lattice

like this. So this is something we say no rewiring, right.
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And then you have an intermediate lattice. I do not know why the thickness is changing. Right,

you can start rewiring it. You have some of these nodes but you also have some nodes that are

essentially across the table. You have some nodes that really grow. So what happens is when you

introduce the first of these links, you see a massive drop in characteristic path length. What is the

characteristic path length here?



Let us say you have n nodes connected to 2k nearest neighbours. What is the characteristic path

length? It will be roughly of the order of n/k, proportional to n/k, right or what is the diameter

first? The farthest nodes are diametrically opposite and you need to do, you can hop k, k nodes in

one shot on one direction and how many k's do we need to hop to get to? The diametrically

opposite, right.

So it will actually be n/2k, right. What about characteristic path length? It will also be some

inversely proportional to k for sure, right. So but what happens is when you start rewiring, you

have a precipitous fall in characteristic path length. These are somethings that you may want to

study. You can do simulations to understand some of these things, right and better still, let us ask

this questions for this lattice that is here...

“Professor - student conversation starts” (()) (26:02) Well, you need a few links, right. So, it

really depends upon your beta step size, right but if you have like even the first few links. It

actually even does not worry too much about the value of beta. The number of links even. So you

do the first few rewirings, there is a precipitous fall in the characteristic path length or even

diameter. “Professor - student conversation ends.”

So what  is  the  clustering  coefficient?  Can you guess?  Let  us  solve  this.  What  is  clustering

coefficient  again? If  a node has k neighbours, k choose 2 is  the denominator, numerator  is?

“Professor  -  student  conversation  starts” (())  (26:56)  the  degree.  “Professor  -  student

conversation ends.”  Number of triangles that intersect at that point or the number of edges

between the k neighbours.
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I hope you had a good introduction to small-world networks today. So the small-world networks

were first published in 1998 and very recently we had a 20th anniversary celebration of that work

with very interesting paper on The Application of Small-World Networks and so on and we also

looked at power-law networks today and in the next video, we will start approaching biology and

look at something known as a centrality-lethality hypothesis and also the concept of assortativity.


