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In  today's  video,  let  us  continue  with  network  models  and  look  at  2  interesting  real-world

network models, namely small-world networks or also known as Watts-Strogatz networks and

power law networks which was first proposed by Barabasi and Albert in 1999.
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What do you find in the real-world? You find a lot of clusters, right. You always have this notion

of a small-world, right. You say that you know it is a small-world because you met somebody

from some other walk of life and so on. So what Watts and Strogatz suggested was, they had a

way to  build  networks  such  that  they  had  some  interesting  properties  compared  to  random

networks.

So, they started with the regular network as you see here. So, this is essentially what they call a

regular lattice. It’s very regular. You know what a regular graph is, right? So, every node has the

same degree and so on. So here it a similar, you have a very set pattern of connections, right. So,

think of this as a, you know, a round table where everybody knows 2 people to the right and 2

people  to  the  left,  right  and  then  what  they  started  doing  was,  they  started  rewiring  these

networks with some probability.

So, on the left hand side, this regular network is 0 probability, right and then you slowly start

rewiring the network. When you have a small probability of rewiring, you will change a few

edges in the graph. When you have a very high probability of rewiring, you basically change

almost every edge in the graph. So, what you do is, you incrementally make the network more

and more disordered in some sense.

But what you find is, between the extreme of p=0 and the other extreme of p=1, you find some



very interesting properties, what is called the small-world. So, what is interesting about small-

world networks? So, they find that small-world networks exhibit very high clustering and much

lower path lengths. And in fact, lower path lengths almost on the order of what you find in the

random network.

But the clustering is much much higher than what you would see in a random network, right. So,

quoting  the  paper,  "in  both  ER random graph  and  the  small-world  model,  the  connectivity

distribution  peaks  at  an  average  value  and  decays  exponentially.  Such  networks  are  called

exponential  networks  or  homogeneous  networks  because  each  node  has  roughly  the  same

number of connections."

So  how  will  you  say,  how  will  you  make  a  comment  like  my  network  has  much  higher

clustering,  not  random or  my  network  has  approximately  the  same  path  length  as  random

networks. So, what you need to do is, given a particular small-world network, you build an equal

sized  random network  and  you  compare  the  properties  and  obviously  you  don’t  build  one

random networks but you build like 100s or 1000s of random networks and then you compare

the average properties.
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So,  this  comes  back  to  some  sort  of  classic  hypothesis  testing.  Let’s  look  at  small-world

networks. So, this is usually called WS, Watts-Strogatz, 1998. How would I substantiate these?



So, we say that the characteristic path length of these networks is more or less in the range, in the

ballpark of random networks but the clustering coefficient happens to be much much higher than

for random networks.

So,  to  prove  this,  let’s  say  I  have  a  WS  graph  with  N  nodes  and  E  edges.  I  create  the

corresponding  ER  graph  with  N  nodes  and  E  edges  or  rather  I  would  make  some  1000

realizations of this graph, ER graph, right and make a plot. I would plot let’s say the average, the

characteristic path length, right. So, this is basically some probability or like this, essentially a

histogram and this is the average path length.

How will this graph look like? It will be normally distributed. We will get a nice bell-shaped

curve. Now the question is where does, so this is your ER path length. The question is, where

does your WS path length lie? So, this will have let’s say this gives you a number L WS, where

does that lie? You will find that, that lies somewhere in this zone. So, nothing surprising, nothing

interesting out there. It is not statistically very different from your random path lengths.

“Professor - student conversation” Plot of what? L WS is not a plot. L WS is a point, right. It’s

one network we have. L WS is one network, corresponds to one network and I am plotting on the

L  ER distribution.  L  ER,  I  have  1000s  of,  1000  networks  here  and  this  is  the  histogram

corresponding to that, right. 

Now I take these 1000 realizations and try to get the clustering coefficient as well. The average

network  clustering  coefficient.  “Professor  -  student  conversation” Same  probability,  same

probability, right, because you will get some variation, right. 

So, you need to get some, so this is why we would, this is essentially a bootstrapping to basically

try and understand what is the, you know, distribution of the test statistic that you want, right.

From one network you will get one value but if you bootstrap, you will get a bunch of values. So,

you know what is the distribution of your statistic of interest and then you see where your test

statistic falls but that won’t, they won’t be comparable to your N,E network, right.



If you take different probabilities, it means that even if you keep the nodes same, the edges will

be changing, right. See E is roughly pNC2, right. If p is the probability of a random edge in the

ER graph, E is essentially pNC2, right. So now if I take these 1000 realizations and I plot the

clustering coefficient. So, I will call this CER. I will again get a curve like this, right. This is just a

histogram.

So, this is some probability or frequency count. Where does CWS fall now? You will find that CWS

falls at the tail of this distribution. Why? It is not easy to answer. You have to see it for yourself

but you basically find that if you take this kind of a regular network, start rewiring it in this

fashion, you find a good amount of clustering, that will give you a clustering coefficient that is

substantially higher than random graphs.

(Refer Slide Time: 08:29)

So, let us look at an example quickly. So, these Watts and Strogatz in their paper, classic paper,

they studied 3 different kinds of networks. The first one was a film actor network, right, where

the nodes are film actors and the edges correspond to movies where they acted together, right and

the next one is a power grid where nodes are power stations and edges basically corresponding to

power lines and so on.

The third network they looked at was the C. elegans neuronal network. So, a network of neurons

in C. elegans and what did they find? L actual. This is the, this is the same as the L WS that I was



talking to you, right. This is  L WS and this is  L ER and you say they are all the same order of

magnitude. There is obviously some variation but it is slightly higher approximately the same

order of magnitude, that is as they say here but look at the clustering coefficient.

They find the random clustering coefficient is almost infinitesimally small but this is massive,

okay. So, this 0.79 versus 0.00027. So, if you want to have a visual representation of that, it

would be the equivalent of having a graph like this and having a real value somewhere here,

right. So, this is a graph with mean=0.00027 and your real value of some 0.79 is somewhere

here,  right.  So,  it’s  completely  outside  your  distribution  which  is,  which  means  it’s  in  the

extreme, right.

Which means obviously that it is extremely statistically significant. So, if you want to compute a

p value, it will basically be, mathematically it will be your less than epsilon, right. It will be

essentially 0 because you find that there are no, no reading from your, from your observations

that comes anywhere close to your real.

So,  when you  see  these  3  networks  are  very different  sizes,  so the  film actor  network  had

2,25,000 nodes. Power grid had about 5000 nodes and C elegans had about 300 nodes with

different  average degrees.  So,  all  3 networks show the small-world phenomenon where  L is

somewhat greater than but still equal to L  random but C is much much higher than random.
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So, this was a very useful observation and Watts wrote a very interesting book on this topic

known as Six Degrees. It is worth a read if you are interested. But then scientist found that most

real networks look different. Many real networks, a lot of real networks, so you did see that the

film actor network or the C. elegance neuronal network does follow the small-world kind of

distribution but you find that many real networks have a completely different distribution, right.

How do they look like?
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So, these are all different kinds. So, some real networks fall into this class. No real network will

fall into the random class practically, right. So that is like a null model that you want to always

compare against and see how different you are and so on but real networks will fall into the



small-world class or what we call the scale-free or power-law class or have a mixture of the 2,

right or it will have different behaviours in different zones.

So, you will never see a perfect degree distribution. We will look at it shortly. So, real networks

have a very interesting degree distribution that looks like this. What does this mean? Let’s look at

2 points in this degree distribution and let me say this is 0.7, let me say this is 0.1 and may be let

me say this is about 2 and this is 100. So, what you have is most of your nodes are boring. They

have a degree of like less than 1 or 2, right.

So, 70% of your nodes lie in this region, right but about 10% of your nodes or may be even less

than that lie in this region where they have 100 links. So typically, you will get a network that

looks like this. What you have here, most of your nodes have degree of 1 or 2 but you have these

2 nodes which have very high degree. So, these are your hubs. So, if you translate it this to a log

log plot, you would essentially get a straight line. So, this is log p(k), this is log k 

or 

p(k) ~ k-γ. 

So, this is called power law. And if you take 

p(α k) ~ α’k-γ. 

So, this is why it is called scale-free. If you scale k, right, the behaviour does not change. This is

called,  so  I  prefer  to  call  them power-law networks  rather  than  scale-free  networks.  These

networks have a very interesting property. What is that property?
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They have been created by growing a network. You can actually create these networks by using

what’s known as  the  rich get  richer  model  or  what  is  more  scientifically  called  preferential

attachment. So, you preferentially attach nodes to nodes that are already rich. Rich in terms of

degree. So, you prefer to attach to a node that already has a higher number of edges. So, if you

were to grow this network, let’s say you start off in this fashion, you start with a network that

looks like this, then you have a third node incoming, it will connect with equal probability to

either of those. Then you have a fourth node, the probability of connecting to these nodes is 0.25,

0.5, 0.25. So, let’s say it connects to this. Now the probabilities will become even more different.

So, this is going to be 1, 3 and 1, right. So, your probabilities of connecting to these will become

alpha, 3 alpha and alpha, right or essentially 0.2, 0.6 and 0.2. So, maybe the node connects here.

The next incoming nodes connect here, here, here, here and as you start growing this network,

you will find that you end up with a power-law degree distribution of p(k) versus k. So, basically

you can generate these networks using a power-law, right. So, the preferential attachment model

generates power-law networks.

“Professor - student conversation starts” Well it is, there is no why to that. If you follow this

method of generating networks, you end up with a power-law network, that is the way to look at

it, right. It turns out, so probably this is how real networks grow, right. So, if you look at a classic

example in this regard is the internet router network or even the worldwide web, right.



So, you see that they just have that a lots more links are more likely to get more links than pages

that have very few links. They remain with very few links, right. So, when a new site comes in, it

will attach, it will connect with higher probability to already popular websites and so on, right.

So, this kind of behaviour seems to be present in many real systems. 

But in practice, you may not find this exact perfect power-law but you will find some, some

deviation, right. This also looks linear almost but you will essentially see something like this or

you know, different flavours of this, right but you can still say that in this zone, I have like a

proper power-law but then there is a rapid fall of our whatever or it remains like, a little flatter,

different kinds of behaviours can be seen in real networks.

So, you want to see, unfortunately there came about a big obsession for power-law networks.

This classic paper on power-laws was published in 1999. After that everybody started publishing

a paper saying I have a power-law network, right but you have to actually do a statistical test.

Can you really make a proper fit of this sort, right? With what accuracy can you make a fit of the

form pk is some alpha into k to the -gamma, right and what are your values of gamma, right?

So, there is a, there is a useful tool that was released by Aaron Clauset for MATLAB. I think the

tool is something like pl fit or something like that which essentially tells  you if you have a

power-law network. It will give you a p value for the confidence in your statistics and so on. So,

you find the networks generated by this model have a power-law degree distribution with gamma

equals 3 and you find that scale-free networks with 2 < γ < 3 which is commonly observed in

biological domain are ultra-small with a characteristic path length that is very, very small, right.

So, it is log log N which is significantly smaller than that of random networks, okay. So, you can

imagine, right, if you have a network like this, it is kind of very easy to most all these nodes

connect to a hub and from this hub maybe you also have connections like this, right. So, from

this hub, it is very easy to go to this hub or any other node.

So, your L Barabasi-Albert ~ log log N which is a very small value. Well, it depends, right. Hubs are



very important nodes. So, you want to target hubs. So, they have higher centrality measures

obviously they have very high degree and so on. We will look at some of these properties may be

in the afternoon.
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So, Barabasi has a very good book which is called LINKED. So, the other book says that every

network in real life is, you know, can be seen as a small-world network and Barabasi would

argue  that  most  real-world  networks  are  power-law networks  and reality  lies  somewhere  in

between, okay. So, welcome back. 

So, we were looking at network models and the third network model that we were looking at was

the power-law network model and this was a very nice book that was written on the power-law

networks and I think you should try to take a look at both these books, both, SIX DEGREES by

Duncan Watts and LINKED by Barabasi.
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So, to compare small-world and power-law. So, small-world one would call  it  as egalitarian,

right. So, it is uniform distribution of resources in some sense whereas power-law has hubs and

resources, right. So, there are certain hub nodes which have a very high degree of connectivity

and there are many nodes which have very low degree of connectivity and small-world networks

don’t have the concept of network growth.

Whereas in power-law, there is growth by preferential attachment and you have local clusters and

distant links in the small-world and you have distant links as we saw in the regular lattice. We

will take a closure look at the regular lattice again. And what happens under attack? That is

something that we need to look at. So, we will look at that and in all, in both networks, you have

small average node-to-node distance.
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So, before we look at biological networks, let’s just refresh some concepts. So, how does the

small-world network look like? Something like this, right. This is a regular lattice where every

node is connected to and so on. I may have missed a few edges but let’s look at a regular lattice

like this. So, this is something we say no rewiring, right.

(Refer Slide Time: 23:46)

And then you have an intermediate lattice. I don’t know why the thickness is changing. You can

start rewiring it. You have some of these nodes but you also have some nodes that are essentially

across the table. You have some nodes that really grow. So, what happens is when you introduce

the  first  of  these  links,  you  see  a  massive  drop  in  characteristic  path  length.  What  is  the

characteristic path length here?



Let’s say you have n nodes connected to 2k nearest neighbours. What is the characteristic path

length? It will be roughly of the order of n/k,  L  α n/k right or what is the diameter first? The

farthest nodes are diametrically opposite and you need to do, you can hop k nodes in one shot on

one direction and how many k's do we need to hop to get to the diametrically opposite, right?

So, it will actually be n/2k, right. What about characteristic path length? It will also be some

inversely proportional to k for sure, right. So, but what happens is, when you start rewiring, you

have a precipitous fall in characteristic path length. These are somethings that you may want to

study. You can do simulations to understand some of these things, right and better still, let us ask

this questions for this lattice that is here.

“Professor - student conversation” Well, you need a few links, right. So, it really depends upon

your β step size, right but if you have like even the first few links, it actually even doesn’t worry

too much about the value of β, the number of links even. So, you do the first few rewirings, there

is a precipitous fall in the characteristic path length or even diameter. 

So,  what  is  the  clustering  coefficient?  Can  you  guess?  Let’s  solve  this.  What  is  clustering

coefficient again? If a node has k neighbours, kC2 is the denominator, numerator is number of

triangles that intersect at that point or the number of edges between the k neighbours.
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I hope you had a good introduction to small-world networks today. So, the small-world networks

was first published in 1998 and very recently we had a 20th anniversary celebration of that work

with a very interesting paper on the application of small-world networks and so on. And we also

looked at power-law networks today. And in the next video, we will start approaching biology

and  look  at  something  known as  the  centrality-lethality  hypothesis  and also  the  concept  of

assortativity.


