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Introduction to Networks

In this video, we will continue with our introduction to networks and look at more types of

graphs like hypercube graphs and so on.

(Refer Slide Time: 00:14)

And we will also start looking at important graphs in biology namely metabolic networks and

we will have a brief aside where we discuss about storing and representing sparse matrices on

a computer.

(Refer Slide Time: 00:32)



So, your graphs could be dense or sparse and you will typically find that most biological

networks  are  quite  sparse,  in  the  sense,  there  are  very  few interactions  for  every  node,

relatively. If you have thousands of nodes and a node might actually interact only with a

hundred nodes at max, usually with three or four, but occasionally with hundred, but never

more than ten percent of the nodes or something like that and this has implications for how

you do the math with these kinds of networks and so on.

(Refer Slide Time: 01:02)

And then you have cyclic graphs. You can imagine that metabolic networks will be cyclic

right. You have several cycles like the tricarboxylic acid cycle and so on. So, you will see that

there is a path from a node to itself. So, you start at A on this graph, you go from A, you go to

C, you go to B, you can come back to A whereas, in this graph, you find that there is no such

path from A to itself.

So,  trees  are  essentially  connected  acyclic,  undirected  graphs.  They  can  also  occur  in

metabolism. Whenever you remove cycles, you will find that there are directed acyclic graphs

that arise and they also arise in scheduling and so on. Let us not worry about that.

(Refer Slide Time: 01:48)



Another useful concept is the concept of labelling a graph. So, a graph is unlabelled versus

labelled.

(Refer Slide Time: 02:03)

There 2 graphs are the same right, if I didn’t label them. If I label them, the graphs are no

longer isomorphic.

So, till you label these graphs they were equal. So, these have very interesting applications in

aligning proteins, aligning protein interaction networks themselves and so on. 

Unlabelled and isomorphic

Labelled and not isomorphic



(Refer Slide Time: 02:53)

And then you have this notion of an implicit  graph. So, these are graphs where you can

describe what node connects to what node, but you never spell out the entire structure of the

graph or something like that.

(Refer Slide Time: 03:14)

So, a classic example of an implicit graph would be something like a hypercube graph where

basically  this  is  a  3-dimensional  hypercube  graph,  right.  How  many  nodes  are  there?

Basically 000, 001,111 and in a d-dimensional hypercube you will have 2d nodes right and d

dimensions and you will have edges between i and j, if they vary in exactly one dimension.

So, you may never be able to store this graph on a computer. If d is 30, 230 is a very, very

large number right, it is like a billion roughly. So, you would not be able to store it on a

computer, but you can run several graph algorithms, right and in fact hypercube graphs have



implications for what we will study at the very end of this course, the advanced topics that I

mentioned earlier on. 

So, hypercube kind of graphs are very prevalent there. Another very useful concept is that of

bipartite graphs and so this brings us back to how do you represent metabolic networks.

(Refer Slide Time: 05:09)

How do you represent a metabolic network?

(Refer Slide Time: 05:20)

So, this is your network. How would you represent this as a graph? There are various ways to

do it and depending upon your choice, you will end up with a different kind of representation.

So, one way to represent this would be something known as a substrate graph. As the name



suggests, in a substrate graph the nodes are all substrates, in this case it will be A, B, C, D, E,

F and the edges represent those substrates which can be converted to one another.

So, A, B, D. Do you see a limitation with this kind of a representation? You don’t know,

right?  So,  this  again  brings  us  to  a  limitation  of  modelling.  So  how  do  you  choose  a

representation?  Going back to how would you choose a model? Depending on what you

want. So, if I want to figure out what is the shortest path to produce F from A or let’s just for

a moment think about glycolysis. I will just write 2 reactions, glucose+ATP, is that right?

That  would  be  the  first  reaction  of  glycolysis.  What  is  the  last  reaction  of  glycolysis?

Phosphoenolpyruvate+, I have a problem here. I now have a two-step glycolysis. Convert

glucose to ADP, convert ADP to pyruvate. Wow! I have glycolysis in two steps. This doesn’t

make any thermodynamic sense, this doesn’t make any biological sense, but it is potentially a

conclusion you would draw from the substrate graph.

One way to get around this is just get rid of ATP, right. Because you will find that these nodes

have very high degree in the graph, you just get rid of this then you are stuck. Then you have

to find a way to convert glucose to PEP and PEP to pyruvate. You will find that this will help

you trace out something that is most likely your real glycolysis, but naturally you want to

look for other ways to represent these graphs. Another way to represent this is what known as

a reaction graph.

(Refer Slide Time: 09:02)

As the name suggests, your nodes are R1, R2, R3. When do you connect them? If they can

operate consecutively, right. So, after R1, you can have R2 and after R2 you can have R3.



There is a notion of direction again. But again you see, very limited in the information. So,

since we are not happy with either of these let’s try to look at how a textbook picture would

normally look.

How would your textbook picture look? It will be basically something like A, you will not

have R1 in the box, you would actually have the first enzyme in the box, right. And then you

will have B, C. R2 gives D. And D, R3, E, F.

(Refer Slide Time: 10:15)

Do you notice something peculiar about this graph? You will note that there are no links

between circles or no links between squares right. So, you find that all links are between

circles and rectangles or rectangles and circles. So, this is called a bi-partite graph. Because

you can partition the nodes into two, such that only one bunch of nodes connect with the

other bunch of nodes, no connection between the nodes.

This also has an aside, quick aside, how do you represent these graphs? You finally need to

represent them on a computer, we look at it  obviously much more closely in the next lab

session where we will have an intro to MATLAB, but usually use something known as an

adjacency matrix. What is an adjacency matrix? It is a matrix size of number of vertices in

the graph.

aij equal to 1 if there is an edge between i and j. Immediately you can think of multiple

things.  For  a  weighted  graph  the  adjacency  matrix  will  carry  numbers,  weights.  In  an

unweighted graph, it will just be binary, 0 and 1. In a directed graph, the adjacency matrix



will  be  asymmetric,  whereas  it  will  be  symmetric  in  an  undirected  graph  or  you  will

essentially only store the upper triangular matrix or something like that.

How will it look in a bi-partite graph? If I said these are my metabolites and these are my

reactions, the circles and your rectangles, how will the adjacency matrix look like? They will

be non-block diagonal, right? This will be 0, this will be 0, no intra-partition links, right. You

will have one’s only somewhere here, right. So, you will have a, it will be a block matrix,

obviously this is after you reorder the rows.

If you interleave the reactions and reaction and metabolite nodes, you wouldn’t have this but

if  you reorder them by the partitions like the R partition and the M partition you would

observe this kind of a matrix. And one more important thing you need to think about is, how

to store the matrix?

(Refer Slide Time: 13:31)

You typically use an array. What is the problem with an array? It takes up or if you are not

familiar with big O notation, it basically takes approximately n2 space. So, in fact if you are

looking at storing doubles let’s say how much space is taken up by a double in computer

memory? 16, 32, 64? So, it depends really on the precision right. So, most machines will

have at least 32 bits or 4 bytes.

This is in fact for a float. For a double, it is usually 64 bits and 8 bytes. So, you are going to

store 8 bytes. So, 8n2 bytes is what you need. But what did we say already, we said that most



real graphs or most biological graphs are actually sparse. So, which means maybe I don’t

have, let’s says the number of nonzeros I have is some αn2 where α<<1.

Maybe  I  have  3% nonzero  entries,  right.  So,  it  is  wasteful  to  store  the  entire  matrix  in

memory, I mean as you know a full matrix with basically having 97% entries are just being

filled up with 0s. So, is there a better way to store these matrices? Is there a better, you can

just store that, that would be a classic way? You just store i, j, aij, how much space does this

take? okay, into 8 so that will be 24αn2.

And given α is, we said 0.03 right, so it will be 0.72, right. So that is much, much smaller

number compared to this. So, in practise you will obtain a lot of savings when you store it

like this, but this is also a naïve method, 0.72 is much smaller than 8 right. So, you made

heavy savings. There are other methods which I want you to go back and read about. There is

something known as CSR, it stands for compressed sparse row format.

There are many other formats to store these matrices and the advantage is how fast is it to

compute AT, how fast is it to compute ATX. These are things you would normally learn in the

numerical methods course. So, how sparsity can be exploited in computations. CSR is, see

none of this is, so n2 is actually you know misnomer here, you should just say it is linear in

the number of nonzeros, right.

So, this is already linear in the number of nonzeros. This will be again linear in the number of

nonzeros but even smaller. You only store the runs basically where do my nonzero start and

how long is my run of nonzeros and what are the positions that they occupy and so on. So,

these are some very important concepts because you will, the moment you start working with

biological problems, you will see that the size of the data, the size of the matrices become

very challenging.

So, you may not even be able to load a data set unless you try to cast this as a sparse matrix.

So,  these are  the challenges  that  you have to  normally worry about.  And then you have

hypergraphs which are nicer generalizations.

(Refer Slide Time: 17:52)



So, in hypergraphs you will see that, so in a graph, is that right, whereas in hypergraph you

can have more than one node connected by an edge, more than 2 nodes connected by an edge.

So, you have A, B, C. You have a hyper edge that connects these 3 nodes, which means that

there is no way to just have a path, there is no notion of a path between A and B now. There is

a path called A, B, C.

And can you  see  where  this  would  be useful?  Already from what  we have  seen today?

Metabolic  networks,  right?  Metabolic  networks  are  naturally  represented  as  hypergraphs

because you need A and B, you need glucose and ATP to produce glucose 6 phosphate. You

can’t  just  convert  glucose  to  G6P. So,  do  read  more  about  hypergraphs,  they  are  quite

important.

And then we have the notion of converse of a graph or a transpose of a graph and so on. And

basically, you invert the edges. If A is connected to B, you disconnect it and whatever other

edges don’t exist in the graph you add it. So, essentially the sparsity will also invert,  the

graph is 3% sparse. The inverse will be 97% dense, not sparse right. And you can have a

complete graph or a clique where every node is connected to every other node.

We will look at these in a little more detail in the next lecture. You also have a notion of a

walk from A to B right. So, a walk is essentially node-edge-node-edge-node. So, A take the

edge AB, B take the edge BC, reach C. So, it  traverses nodes and edges so this  is  very

important when you look at graph algorithms. We will not focus on graph algorithms in this



course,  but  we  will  instead  study  how  you  know  various  network  parameters,  various

network topologies are used to understand and infer about graphs.

I think I will stop here for today.

(Refer Slide Time: 20:03)

So,  today  we  looked  at  a  few more  types  of  graphs  and  how one  represents  metabolic

networks  and  what  are  the  advantages  and  disadvantages  or  you  know  the  kind  of

interpretations one can make with different types of metabolic network representations. And

we also overviewed some concepts of storing sparse matrices on a computer. In the next

video, we will look at some more motivation for why we use graphs and the fundamentals of

network biology beginning with various types of network parameters.


