
Computational Systems Biology
Karthik Raman

Department of Biotechnology
Indian Institute of Technology – Madras

Lecture – 12
Lab: MATLAB Basics

In this last MATLAB introduction video, we will focus on a very important topic namely floating

point arithmetic and this has implications for how one writes numerical algorithms to solve

different kinds of problems and so on although we won’t be delving into great details, you should

look it up and this video will give you at least an overview of the surprises one might expect, the

surprises one might encounter, when you work with floating points on any computer.

(Refer Slide Time: 00:39)

And as always, I must draw your attention to how floating points are represented, right you can

always have some interesting, right, so oops! 0.1+ 0.2 - 0.3 is not 0, welcome to floating point

world, right, so if I add 1 + 0.0000000001,a very small number, it will give me something, if I

add 1 + 1/1e100, it will give me 1, right, so when does this change? There’s something known as

machine epsilon and this is typically 2- 52 on most modern computers, it is 2-52, right.

So, this is the smallest distance between 2 numbers on the computer’s number line, right. In a

real number line, you have infinitely many numbers between any 2 numbers. But computer’s

number line is basically discrete, right. So, how does the number line look like? So, how many

different floats can you store on a computer? So, we have a 32-bit representation. How many

integers can you store?

(Refer Slide Time: 02:59)

-52 is for 64-bit. How many integers can you store in 64 bits? How many integers can you store

in 64-bits? It is not a trick question, it is basically 264 typically, 263…263-1.

So, how many floats in 64-bit? It is actually the easiest to think of. 264 floats, if you have 64 bits,

you can represent 64 different numbers using the 64-bits, as simple as that right, whether those

binary numbers represent integers or floats or whatever else depends upon the you know how it’s

encoded and so on, if you have standards. So, there is something known as which I think

everybody should try to quickly look at.

The IEEE 754 standard. The IEEE 754 floating point standard, this basically says that every

number is represented as (1+f).2e, so every number is actually represented as some f, e and the

values, the maximum values of e and all of that vary depending upon how many bits you are

using and so on, so in 64, there is a particular set of numbers and so on. I think it is worth

understanding this.

Because the first thing you need to know is that because you have only 264 bits, you are

compressing all numbers between -infinity and +infinity to a discrete number line. Supposed to

be continuous, right, 264 is big but you don’t have every number there, so you can’t, so let’s look

at some interesting things here.

(Refer Slide Time: 07:39)

What is epsilon(eps)? Epsilon is this very small number, 2-52. Can I compute eps/100? Well,

certainly not, if eps/100 were 0, then you can never say represent gravitational constant, G as

6.6734*1e-34, right? So, you need those small numbers to be represented, so basically you don’t

have a uniform number line, the number line increases in resolution in some places, decreases in

resolution in some places.

Obviously, I can’t add 1e10+G –1e10. It will be 0 but 1e10– 1e10+G, will be G, so addition is no

longer associative, welcome to floating point arithmetic. a+b+c is not the same as a+(b+c), so

these are some of the things you need to be vary of. Why is this important? This is mostly not

important for us, it is not important when you look at network biology, it is not important when

you look at constraint-based modelling.

It becomes very important when you look at ODE solving, ODE solving will have all kinds of

weird things, when you use solvers and these numerical inaccuracies will blow out and so on. So,

you need to be quite careful with this and in general, if you are doing any numerical

computation, you should never compare if 2 floats are equal, you should not let’s say

 a=0.1+ 0.2, b=0.3, you should not ever say a = = b.

It says a is not equal to b, you should always check, if abs(a-b)<eps, very good. And you often

don’t use something as low as epsilon, you will use a smaller number like 1e- 6 or something like

that. So, what is therefore, eps? So, eps of, oh! eps on MATLAB is a cool quantity, it is the

smallest number when added to a number, will make it different.

(Refer Slide Time: 10:50)

So, it basically gives you the spacing of floating point numbers and this spacing is not uniform.

(Refer Slide Time: 11:02)

Yes, so 0+eps(0), no problem, 0+eps(0)/2, this is the smallest number, why by 2,

0+eps(0)*0.9999.

 1e16+1 is 1e16. 1e16+2 is 1e16. But, 1e16+2-1e16 makes it different from 1e16. Interesting

scale, that is the IEEE 754 notation that people came up with, this is to make sure that you

maximise the number of possible computations. You also have some special floats, NaN, Inf,

-Inf, these are all special floats. NaN is not a number, 0 by 0 indeterminate quantities.

log (-1), oh wait, here, it goes to complex, so, I think this is about what I wanted to cover, so I

hope you got a quick, very quick introduction to MATLAB, so I think the most important things

to know are logical indexing and ways to not use, think of ways to not use loops in your

MATLAB code.

(Refer Slide Time: 12:42)

So, I hope today, you had a very interesting introduction to floating point arithmetic and it will

prompt you to go and read a little more about these interesting topics. In the next video, we will

go back to graph theory and we will start to the history of the graph theory and the different types

of graphs.

