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Welcome to the lecture 4 segment on of the Course Demystifying the Brain. In the last

lecture, we talked about Neurons and Signaling. We discussed what kind of signaling

process occur in the neurons, we talked about how signals flow down the dendritic tree

and gets summated in the cell body and action potentials are generated in the in the axon

hillock and then how the property down the axon and now arrive at the synapse and

communicate and how these signals was communicated across the synapse towards the

neurons.

Now, in this lecture, we will talk, we will construct networks with this neuron brain like

networks and see what kind of interesting things this networks can learn.

(Refer Slide Time: 00:54)

So, in the last lecture, we looked at simple neuron model like this. So, where I have a

neuron and results inputs by generate some other neurons. And on the in the figure on the

left you see one e p, s p flowing down on the top dendrite and two e p, s p s flowing

along on the low dendrites. All these things get added up in soma and then since negative

is a dominate there is no action potential generated therefore, there is no output.



In the figure on the right there are two e p s p s, in the top most dendrite and then one e p

s p in the middle one and one I p s p in the bottom one. When all of them add up, the

positive is dominate and therefore, the at the soma potential crosses of threshold and if

action potential generation and there is some output.

 (Refer Slide Time: 01:51)

Now, given that  a  single  neuron waves  like  this,  if  you construct  a  network  of  this

neurons and think of you know correct network as the brain like network, what kind of a

computations can such network perform?.

(Refer Slide Time: 01:57)



So, this was the question that was asked by these two people, way back in 1940s. So,

they were Warren McCulloch, who was a Neuro Scientist and Walter Pitts that who was a

Mathematician. These two people got together and then asked the question right what

kind of computations can be done with the neuron model that you have just looked at.

(Refer Slide Time: 02:14)

So, the intuitive neuron model, which you have described verbally until now in the last

lecture. The McCulloch and Pitts have taken that kind of a neuron model and formulated

a mathematical equation right to describe this such a neuron. This see neuron model

which is called the McCulloch and Pitts neuron model he is described like this. So, this

neuron receives inputs from other neurons these inputs are like are denoted by x 1, x 2

and x n; that means, there are n inputs that are received by this neuron. And x 1 x 2 you

can think of them as action potential is coming from other neurons. Then the quantities w

1, w 2 and w n represent the synapses between these other neurons. And the neuron that

you are looking at in the center w actually represents the synaptic strength right and we

have seen in the last lecture the Synaptic screen can be high or low and can be positive or

negative.

So, w can take values which are high or low and can be positive or negative. And this

quantity is called weight in Computational Domain. So, you have all these weights and

so, when all these inputs are received by the neuron they get added up with appropriate



weight  by w a after  multiplying  with appropriate  weight  and that  is  denoted  by the

summation sigma w i x i.

(Refer Slide Time: 03:25)

And when the summation causes a threshold, which is denoted by b in this case then the

output is non-zero, it is 1. And when the summation does not cross the threshold output

is 0.

(Refer Slide Time: 03:39)



And this  thresholding is achieved by the function g, which is basically the threshold

function or what is called the step function where g of h is given as it is equal to 1 when

h is positive or 0 and it is equal to 0 otherwise.

(Refer Slide Time: 03:56)

So,  now,  if  you  take  this  McCulloch  and  Pitts  computation  neuron  models  and

construction networks out of them, what kind of a network when you construct involving

the behave?

So, McCulloch and Pitts thought of the brain has a big logic circuit. So, because they

have shown that the McCulloch and Pitt’s neuron models can be made to behave like in

the logic gates. So, as you know that modern computer is constructed out of Boolean

logic. So, or Boolean circuits Boolean circuits are constructed out of 3 basic fundamental

logic gates, the AND gate, OR gate and NOT gate. And by combining these gates in

various ways, you can ca construct any desirable Boolean logic circuit.



(Refer Slide Time: 04:40)

So, therefore, McCulloch and Pitts have shown that the 3 fundamental logic gates can be

constructed using the McCulloch and Pitts neuron model.

(Refer Slide Time: 04:50)

So, for example, if you want the OR gate, the OR gate truth table can be seen in the right

top in the slide. So, the inputs are 0, 0, 0; 1 1 0 1 1. So, the inputs are 0, 0; output is 0 and

inputs for input 0, 1, 1, 1, 0 now 1 output is 1 because if either x 1 or x 2 is equal to 1,

then output is 1 



So, you can get this logic gate with a McCulloch and Pitts neuron model, which has 2

inputs as shown in that in the formula here. So, y is equal to g of x 1 plus x 2 minus point

5. So, if x 1 x 2 are both zeros right, you have g of minus point which is 0. So, right

under if we you even if 1 of x 1 and x 2 are ones right then the argument of g crosses

becomes a positive value. So, therefore, y is 1. So, you can see that the McCulloch and

Pitts neuron model in this case, behave like behaves like logic gate.

(Refer Slide Time: 05:48)

Similarly, in the AND gate, if you just increase a threshold from 0.5 to 1.5, it will easily

verify that the argument becomes positive only when both x 1 and x 2 are equal to 1; that

means, x 1 and x 2 are equal to 1 and otherwise the argument is negative. Therefore, y 0

when for the first 3 cases that is 0, 0, 0, 1, 1, 0 and 1, 1 and 1, 0 and y is 1 only when

both x 1 and x 2 are equal to 1.



(Refer Slide Time: 06:20)

Then the third gate is NOT gate. So, in this case there is only one input x and there is

only one output y. So, when x is 1 y should be 0 and when an x is 0 y should be 1. And

you get that you can verify that very easily that the single this in neuron model which has

only single input right behaves like logic gate.

So,  therefore,  they  could not  they showed how you can  construct  more complicated

Boolean networks using McCulloch and Pitts neuron models and they have concluded

that Brain is a logic engine.

(Refer Slide Time: 06:49)



So, this kind of a thinking was even fueled by the social and historic background right at

that time; because they worked in the early part of the 40s, 1940s and that was the time

when the world war was going on and that was the time when people were exploring the

use  of  computing  technology  you know extensively  for  war  applications  or  military

applications and in as a part of that kind of an effort large scale effort right.

(Refer Slide Time: 07:20)

Ah this huge computer, that you can see in this picture. A computer that fills an entire

room right was built in and commissioned in 1946.

This  computer  was  called  Eniac  and  it  was  the  ka  constructed  in  university  of

Pennsylvania. It was used for lots of military applications like calculating the project of

you know missiles and you know cracking enemy codes and things like that.

So, with all this since going on the background, it was very natural that McCulloch and

Pitts thought of brain is a computer; because they could see all the power of the modern

computer or at least modern by the standards of 1940s and that it was itself was quite

overwhelming, because at that time people were manually calculating the you know the

this trajectories of missiles and that what took 20 hours you know to do the calculation

with this Eniac computer was able to solve in only 30 seconds. So, it could really see the

power of the computer.



So, they thought right brain also must be like a computer and right and neuron is like a

logic gate.

(Refer Slide Time: 08:21)

But point is say it is a very interesting idea it is very insightful, but unfortunately if you

looked at more data from brain, you would very quickly realize that brain is not like a

big logic circuit or a Boolean circuit. And the analogy between the computer and brain

cannot be taken too far, why is that?

(Refer Slide Time: 08:29)



Let us look at some several properties right and compare brain with a computer. First of

all structural in terms of the material that is used right brain is a soft organic tissue it is a

3-D volume right mass of tissue and it is wet and it is warm ok.

(Refer Slide Time: 08:48)

 (Refer Slide Time: 08:58)

And whereas, the computer, if you look at a mother board for example, is a rigid hard

inorganic 2 dimensional sheets of matter and also if you look at the chips which are

housed  in  various  various  chips  inside  write  the  VLSI  circuits  themselves,  the  2

dimensional sheets of matter.



So, in that sense there is a lot of difference. So, now, if you look at the signals that are

used in a brain and as suppose to computer right, we have seen that in the neuron signals

are action potential. the trains of action potentials. The actual firing patterns vary from

neuron to neuron there are there is a there are a wide variety of neurons in terms of that

can be classified in terms of their firing properties.

(Refer Slide Time: 09:35)

So, you can see some of these properties firing patterns in the figure on the left, but if

you look at the computer and if you just swap any or bus or in a computer and look at the

signal, it will look like simple rectangular wave going up and down and going between 2

2 voltage limits. So, minus 5 volts and plus 5 volts or something like that right. So, the in

terms of signals used both Brain and Computer are very different.

As even more fundamental difference between brain, computer where philosophically

there is a fundamental difference in the design philosophy of this 2 systems which is

Fault tolerance. Now, to illustrate that let me give a small historical note.



(Refer Slide Time: 10:17)

So, this incident took place in the late 19th century in the US. So, there was this guy

called Phineas Gage who was a rail road construction worker, his job is to burry bombs

and burry explosive dynamite in soil and soften the soil and break the rock and things

like that. So, he was doing that one day and he was packing the emanation in a whole in

deep whole using a crowbar and unfortunately the bombs went off exploded right on his

face and the crowbar went through this head and actually, what you are looking at in this

picture is a reconstruction of his skull.

So, 3 that crowbar went through his brain through the you know frontal lobe of the brain

and remained like that and most miraculously the person survived that accident. He was

taken to a nearby hospital and the crowbar was removed, surgery was performed and he

survived that surgery. There was some personality failures, but what is quite interesting is

the person survived. Now, imagine a similar accident right that occurs to a computer and

you imagine you are driving a metal rod through the chassis of a desktop. I mean that

will be the end of that desktop right. So, brain is remarkably Fault tolerant whereas, a

computer is not, does not take very kindly to you know these kinds of faults. There is

another very important different screen brain computer which is a brains or we humans

right learn, so, we learn by error feedback right.



(Refer Slide Time: 11:44)

You want you make a perform an action in a in under certain condition then some in sub

context and look at what the environmental show in that context. And then, if it is good

then probably you do the same thing over again next time and if you get a negative

feedback in the environment you stop doing it.

So we learn by trial and error no by getting feedback in the environment.

(Refer Slide Time: 12:07)

Whereas, a computer is preprogram and especially some of the older ones like this see 3

p o from Star wars like these are all like programmed machines the modern machines



you know with a  lot  of  inputs  from AI and machine  having that  different  story, but

otherwise traditionally computers are preprogrammed in a rigid fashion.

So, so, the therefore, this was not a very fair comparison to compare brain with a logic

circuit and with a computer and think of the brain has a network of logic gates just like a

Boolean network. So, this relation prompt at this person called Frank Rosenblatt.

(Refer Slide Time: 12:47)

You know in  the  late  50s  to  use  the  same McCulloch  and  Pitts  neuron model,  but

construct a different kind of a network. Now, he showed how you do not have to hard

code the weights the way McCulloch, Pitts have done whereas, in case of McCulloch

Pitts they what they have done is they have just set the weights of various neuron. So,

that they behave like an and gate and or gate and things like that. Whereas, in Rosen

blatts what Rosen blatts has achieved is he showed you can train a neuron right and make

it  perform some task.  And he called  this  network a  Perceptron because it  is  able  to

perceive and classify patterns, visual patterns.



(Refer Slide Time: 13:23)

So, on the right hear and on the slide you see a kind of a retinoic implementation of the

perceptron machine, it is called Mark one. So, basically per perceptron learns by error

feedback just like you know we do just like brains do.

(Refer Slide Time: 13:37)

So, you so, in that box in this block diagram in the center you see a box which is which

has a neuron, a McCulloch and Pitts neuron. Actual network of them and this network

receives an input factor X and it produce an output factor Y and you compare the output



factor to some desired factor or the which is called the target output and look at the

difference between the desired output or the target output and the actual output.

If both are the same then so, the 5 network is doing well. If both are not the same, then

there is an error. You feed the error back into the network and then there are rules by

which you can adjust all the weights slightly. So that next time around when you give the

same input. The output that you get from the network which is Y will be slightly closer to

the target output. So, you keep doing this alternate will be over and over again or lots of

input output patterns right and after lot of such pros you know such train at the network

will most likely converge to correct solution, so that it learnt a map all the inputs X onto

all the outputs Y.

(Refer Slide Time: 14:42)

So, how does it work? So, you imagine a neuron which takes input factor X and there all

these weights that associated with the input connections.

And when you calculate the output y using the formula that you have seen little while

ago, you get output y and you can you also have the desired output d you compare the

desired output d with y and you get the error delta which is equal to d minus y. And once

you know the delta,  you can update all the weight W is in the formula given in the

bottom of this light. So, delta W i is equal to eta which is like proportionality constant

which is typically a small positive number times delta the error times a input x i. So, for

every input factor x you represent the input factor get the output calculator at the output



and then use the error which is available at the top and multiplied with the input which is

available at the bottom of the connect right and then multiply this product with a with a

proportionality constant eta and that that tells you by how much you have to update this

weight.

So,  if  we interpret  this  biologically, what  you are doing essentially  is,  if  you take  a

synapse. On the presynaptic side of the synapse, you have some information which is the

input that is x i on the post synaptic side your information delta which is the error. And

so,  at  the  synapse  you  imagine  that  the  synapse  is  taking  information  from  it  is

postsynaptic side and features there it is taking information from the presynaptic side and

fetches input value x I, somehow combining these two and faring out how to change it is

own strength at the synaptic strength. So, that is biologically in a very general sense it is

feasible, but synapse is do not exactly behave like this has some issues we will be able to

come to it later on the course ok.

So, what kind of what does network like this do? You know if it is a single neuron what

is exactly is it doing?

(Refer Slide Time: 16:38)

So, consider the formula again y is equal to g of sigma w i x i minus b. So, you see that g

is threshold function or the step function. So, therefore, for some values of x, y is equal

to 1 and for other values of x, y is equal to 0. And there are there are points where the or

the output is a kind of somewhere between 1 and 0. Actually it is a step function that



cannot take any value between 1 and 0, but so, thing is when the argument is positive y is

1 and when the argument is negative y is 0. So, in the argument that is sigma w i x i

minus b,  if  it  is  0 right that  is  why when you are on the border  between these two

regions.

So, the regions where output y is equal to 1 and output y is equal to 0 are called the

Decision Regions because it is as of the neuron is making a decision about the input. So,

whether does input belong to one class where output is 1 or does it belong to other class

where  output  is  0,  that  is  decision  it  is  making.  Therefore,  the  2 regions  are  called

Decision Regions and the boundary between 2 regions which is a straight line in this case

is called the Decision Boundary. So, we will use this terms later on when we describe

more complex problems.

So, let us see how a perceptron can learn. So, in earlier we showed how you can just

hand code the weights of a McCulloch and Pitts neuron model to make it behave like an

OR gate.

 (Refer Slide Time: 18:00)

So, now, we will show how you can train the neuron to a on the on the data of the OR

gate to make it learn the OR gate function. So, we here the OR gate truth tablet is given

here in the table on the slide. So, let us present this data.



(Refer Slide Time: 18:14)

So, I present 0, 0 with the first pattern 0, 0 to the neuron and output should be actually is

0, but it is actually or giving output of 1. So, that is wrongly classified and then you

present 0, 1.

(Refer Slide Time: 18:28)

So, the data quantity of presenting is shown on the is shown in color green in this picture

itself it is very small, hope you will be able to see it.



(Refer Slide Time: 18:38)

So, in this case the patterns correctly classified. So, there is no change whenever there is

correct classification does not change.

(Refer Slide Time: 18:46)

Then you present 1, 1 which is also correctly classified. So, there is no change ok.



(Refer Slide Time: 18:50)

So, out of 4 patterns, the neuron is able to classify 3 patterns correctly ok. So, it you have

75 percent accuracy. So, you have to do it over again until you get 100 percent accuracy.

(Refer Slide Time: 19:02)

So, present 0, 0 again, this time they line the decision boundary has moved because of

learning, the weights have changed a little bit and decision boundary has moved. So,

now, the response for 0, 0 is also correct.



(Refer Slide Time: 19:14)

And response for response for the other pattern 0, 1 it is correct, 1, 0 is also correct.

(Refer Slide Time: 09:18)

1, 1 is also correct.



(Refer Slide Time: 19:19)

Therefore the neuron has learnt to produce correct responses for all the 4 patterns. So, it

is now learned the lo the logic gate OR gate ok.

(Refer Slide Time: 19:21)

So, you have 100 percent accuracy. So, thing is what the neuron is doing is it is time to

classify 2 sets of points right.



(Refer Slide Time: 19:38)

So, in this simple schematic you have.

So, in this simple schematic, you have the green points and the blue blue dots right both

represent 2 classes. And the neuron is trying to separate these 2 classes. Identify that it is

one is class 1 and one is class 2 the other is class 2 and by drawing a line that separates

these 2 classes.

So, in this example we are looking at 2 dimensional data. So, we are ta we are trying to

separate  the classes  single  line,  but  in  gena in  general  case where the input  is  high

dimensional, you separate 2 cases using a ha hyper you know hyper plane right in higher

dimensions.

So,  and general  there can be infinite  number of  such hyper  planes  or lines  that  can

separate  2  classes  which  is  what  you can  say  in  this  picture,  but  one  problem with

perceptron is that they can only classify certain special kinds of patterns called linearly

separable pattern.



(Refer Slide Time: 20:24)

So, what is that? Let us look at the simple semantic.

(Refer Slide Time: 20:31)

So, on the left you see 2 2 classes. You have the green dots and the blue dots. You can

separate these 2 classes using a straight line, but if you look at data on the right side,

again you have green dots and blue dots, but no matter how you draw the line you cannot

separate these 2 classes right. You are always miss class where some patterns.



So,  patterns  which  cannot  be  is  separated  or  classes  which  cannot  be  separated  by

straight line or hyper plane are collinearly non-separable classes. And it turns out that

perceptron  cannot  learn  the  those  kinds  of  classes.  They  are  too  complicated  for  a

perceptron ok.

(Refer Slide Time: 21:08)

So, so if you take a slightly more complicated logic gate like the EXOR gate whose truth

table is given here in the top of the slide right. So, for input 0, 0 you have output is 0 and

0, 1 it is 1 and 1, 1, 1 is 0 and 1, 0 is 1. So, this depicted in the figure in the bottom the 2

opposite diagonal points. So, A and C belong to the same class and similarly B and D

belong to the same class.

Now, no matter how you draw the line that you would not be able to separate the green

dot from the blue dots. So, that you can verify right in this little in this video if you put

together right.



(Refer Slide Time: 21:48)

On the left side, you are seeing how the decision surfaces decision boundary is moving

and on the right side you see the error. So, error should ideally go to 0. If the neuron is

able to learn all the all the right responses correctly, error will go to 0. But in this case

even after lot of training the error does not go to 0 and stopping at 1. So, it is making a

mistake on you know one data point and it it would not be able to recover from that it

would not be able to learn that perfectly.

So,  the  perceptron  is  interesting  model.  It  can  learn  supposed  to  the  traditional

McCulloch  and  Pitts  approach  to  modeling  brain.  So,  that  is  what  is  nice  about  a

perceptron, but it is drawback is it can only learn very simple kinds of classes, classes

which can be separated which are linearly separable.

So,  therefore,  certain  others  have  you  know  long  stay  a  strong  criticism  against

perceptron.



(Refer Slide Time: 22:45)

So, particularly Minsky and Papert who come mostly from artificial intelligence domain,

which is like a rival domain you know for this kinds of neural network models, they

launched  a  very  strong  criticism  saying  that  the  single  perceptron  limited  in  it  is

capabilities.

(Refer Slide Time: 22:57)

So,  therefore,  which  is  that  is  true,  but  then  the  next  statement  is  not  quite  correct

because they said it worth studying it is multilayer counterparts. So, usually that actually



is  sa  slightly  counter  initiatives  because.  So,  normally  when a network which  has  2

layers shown to be not very powerful.

The network with multiple layers or more layers is likely to be more powerful because it

it is bigger, it is more complex. The conclusion that it is the conclusion that Minsky and

Papert have drawn is totally contrary that it kind of intuitive understanding.

(Refer Slide Time: 23:34)

So,  in  their  own  words  what  they  have  said  about  perceptron  is  as  follows.  “The

perceptron  has  shown itself  worthy  of  study despite  or  even because  of  it  is  severe

limitations. It has many features to attract attention: it is linearity; it is intuitive learning

theorem; it is clear paradigmatic simplicity has a kind of parallel competition.

There is no reason to suppose that any of these virtues carry over to the many-layered

version. Nevertheless, we consider to be an important research problem to elucidate or to

reject or intuitive judgment that the extension to multilayer systems is sterile.” Basically

they have expressed the prejudices that it it is futile to study multilayer versions of a

perceptron ok.

In spite of that kind of warning or a caution from Minsky and Papert where people are

going just went ahead and studied multilayer  versions of a perceptron and a actually

found that the multilayer versions of perceptron actually lot more powerful and they are

free from the some of the limitations of a perceptron.



(Refer Slide Time: 24:31)

 (Refer Slide Time: 24:39)

So, if you look at perceptrons have only 2 layers, there is input layer and the output layer

and there are no layers in between whereas, in case of Multilayer Perceptrons, they can

have any number of layers. So, here also you have input layer right and the output layer.

And between the two, you can have any number of intermediate layers which are called

hidden layers.

So, in this figure you can see 3 hidden layers right and. So, with the with this large

networks, people have found that we can solve lot of problems which you could not have



solved with a perceptron. And in case of multilayer perceptron, the way you think about

them is has input/output machines right.

(Refer Slide Time: 25:17)

They take the input factor X and produce an output factor Y right and they and the as you

train the network and as adjust the weights of the network, the network will learn to map

arbitrary  inputs  and  arbitrary  outputs.  So,  they  can  learn  very  complex  input/output

mapping functions.

So, therefore, since they are able to map input onto outputs, you can think of them as

some kinds of regression tools.

So, regression or you know more familiarly called curve fitting, that you have some data

and you fit a curve to the data.

 (Refer Slide Time: 25:44)



So, in this case I have some data which we are able to plot on a plane. So, there is x axis

and y axis and you see a bunch of points; bunch of X, Y points shown in this graph. And

you fit them with a curve and so, you want to fit a curve which gives you least error at all

this data.

(Refer Slide Time: 26:07)

So, now the training patterns that we use in case of an MLP, are like the data point that

use in this graph and the curve which you are fitting into this data is like the MLP itself.

So, the input/output function of the MLP is like this curve that you are that you are

seeing here. So, basically in curve fitting that is your you have only one input variable X

which you are mapping on to a output variable Y.



Whereas in case of an MLP, you can have any number of input variables; because X is a

vector and which is mapped onto any number of output variables which is a vector Y.

(Refer Slide Time: 26:36)

And it turned out that MLP is free from the kind of limitations that we have seen in case

of perceptron MLP is what is called universal approximator.

(Refer Slide Time: 26:47)

Well, what does that mean? It has been shown that an MLP with a single hidden layer

can approximate any continuous input/output function with arbitrary accuracy, over a

finite input domain given number of given enough number of input neurons in the hidden



layer. So, this was shown mathematically and there is a theorem which you know proves

this. So, to illustrate that I mean it this is a very interesting and a powerful theorem in

units for literature.

But, we know these kinds of results you know in our simple you know did in regression

literature. So, for example, look at this example. So, we have we have on this data which

we have to trying to fit with a curve you know just a moment ago.

(Refer Slide Time: 27:34)

So, let us assume, we try to fit a straight line to this data and which you can see this

green line is a straight line which we are trying to fit to the data and it is a very bad fit

right so; that means, if you fit the formula Y is equal to a naught plus a 1 x at it is a linear

fit; that means, you are fitting it with a polynomial of degree 1 right, you get that green

line which is a very bad fit. But on the other hand, if you fit a cubic function to this data

that is Y is equal to a naught plus a 1 x plus a 2 x square plus a 3 x cube, you get this blue

curve right which is a which is a much better fit and here the polynomials of degree 3.



(Refer Slide Time: 27:54)

So, basically what you are saying is a simple example is, as we increase the degree of the

polynomial with which you are feeding the data, that if it gets better and better. So, what

we were seeing in case of neural network is something very similar. So, as you increase

the number of hidden nodes right and if it gets better and better. So, that is what the

essence of this theorem is what this theorem says is, a network with a single hidden layer

is good enough to learn la login a wide range of real world functions right. And if you

have enough number of hidden neurons in the hidden layer, then you will be able to learn

any function with arbitrary accuracy.

So, let us take a problem which was not solved by a perceptron and we will show using

some  simple  calculations  that  an  MLP can  solve  this  problem.  So,  let  us  take  the

example.



(Refer Slide Time: 29:00)

So so so, we will take MLP which has a single hidden layer and that hidden layer has 2

neurons. So, the input to the network is two variables x 1 and x 2 and there are two

hidden neurons and their outputs are v 1 and v 2 and finally, the outputs the v 1 and v 2

neurons project to a single output neuron and whose output is y.

So,  therefore,  the  input/output  relationships  of  all  these  neurons  are  given  by  this

formulae. So, V 1 is given as g of x 1 plus x 2 minus 0.5. So, that is like an OR gate and

V 2 is given as g of x 1 plus x 2 minus 1.5. So, that is like an AND gate, which you have

seen before and y is equal to g of V 1 one minus v 2 minus 0.5.

So, what is happening here is, so, V 1 is given by g of x 1 plus to x 2 minus 0.5.
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So, therefore if you see in this figure, so, this whole region is where V 1 y 1 V 1 is equal

to 1 and this whole region V 1 is equal to 0 and in this case this whole region V 1 is 1,

here V 1 is V V 2 is 0 and here V 2 is 1.

So, if you take V 1 minus V 2, you get a kind of a band where otherwise 1 this is the

center inside this brand and y is 0 outside on either side of the band ok. So, therefore, y is

equal to g of V 1 minus V 2 minus 0.5 alright approximate.

So, the EXOR gate it learns EXOR gate. But what you have done just now is a kind of a

simple hand calculation, that just we wanted to show that a network which has a hidden

layer can do something that a perceptron cannot do. But you cannot do the same thing

with you know large scale real world problems.

So, therefore, we will have to come up with a learning algorithm a learning scheme by

which  you  can  paint  the  weights  automatically.  So,  the  network  will  learn  the

relationship to input and output automatically without does calculating the weights by

hand.

So, we will switch back to the same learning scheme right where you have the network

inside this box the NN and then input is present to the present to the network and you get

the output and you compare the output with a target output or exit output look at the error

and error is set fed back to a network and using the errors you update all the weights



slightly. So, next time around when you give the same input X, you get the output Y

which is closer the target output T.
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Now, this is a actually a very interesting departure from the traditional way of solving

problems.  So,  traditionally  we  want  to  solve  a  problem  right  in  which  consists  of

transforming certain input quantities X into some output quantities Y and you have to

figure out what is the relation between X and Y and come up with a set of rules set of

calculation steps and execute those steps to transform X into Y.

(Refer Slide Time: 31:51)



But with this kinds of neural network approach right, you just learn from experience. All

that you do, is expose the network to lots of inputs and outputs, these are examples.

These are increases some experience and the network will automatically learn to do this

map by training.

So,  this  is  also  very  similar  to  how we  learn  right,  where  you  how you  teach  say

somebody by trial and error. So, it just visualize how you tea teach a small child how to

read.  So,  perhaps  you will  show the  child  a  picture  of  a  letter  A and also  child  to

pronounce it as A, if the child says A you know you give some you know pat on the back

or give some lollipop or something like that.

While the child says B then that is a wrong response. So, then you give a warning or a

little slap or something like that. And you by this kind of error feedback, where the child

gradually learns to to read the letters correctly. So, that is that is exactly now an MLP is

trained to learn the map.

So, the question of training the network; training the MLP right developing an algorithm

for training MLP, initially ran into some difficulties because in case of perceptron, if it is

very easy how to derive the learning rule because in case of perceptron, you had an error

at the output and you had input x i and by multiplying these two, you are able to update

the weights.

But whereas, in case of an MLP, there is a problem; because it had many layers and

otherwise available at the output layer, and you have to change the weights everywhere

all these stages ok. So, now, you need error throughout the entire network update the

weights, how could you use error which is available here to update the weights which are

very far from the place where errors are available? Ok. So, this was the challenge and

initially for it was not clear how to overcome this challenge. So, this problem is called

credit assignment problem or right and, but very soon it was solved by several people.

there is a long history of how people have discovered this algorithm over and over many

people have discovered this algorithm now again and again without the knowledge and

again without knowing the knowledge that others have already discovered it.

Thing is after the severe criticism of Minsky and Papert in the 60s about perceptrons, for

a long time nobody bothered about these kinds of network models nobody bothered to

study multilayer versions of perceptrons. So, there was a (Refer Time: 34:21) research



for nearly 2 decades from 60s and only in the 80s you know the research has picked up

again.
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But in the 70s, there was this solitary hero called Paul Werbos who has read thesis at

MIT on the learning algorithm for multilayer perceptrons, but nobody paid attention to

his work because this area was not popular. It was like a taboo to work on multilayer

perceptrons.
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So,  later  on  in  the  80s  several  groups  have  discovered  the  same  algorithm  nearly

simultaneously. So, one was Rumelhart, McClelland, Williams in 86.

(Refer Slide Time: 34:55)

Then  Parker  in  85  and  LeCun  in  85,  they  all  discovered  the  same  algorithm

independently.

(Refer Slide Time: 35:02)

.



So, in the multilayer perceptron which is trained by this algorithm there are 2 stages. In

the first stage so, the input X is presented to the network to the input layer and then it is it

is made to climb upwards right and from input to the hidden layer a hidden layer to the

output layer and so on. And the output layer you get the output Y. Then you compare the

output Y with a desired quantity desired output T right and you get the error which is

delta that is T minus Y.

Once you have the delta, you back propagate this delta right from output layer to hidden

layer. And if you have more hidden layers, you back propagate the error further down, all

the way to the first hidden layer. And once you have all the deltas for our all the hidden

layers of the network, then you can update all the weights in one shot using like this. So,

for any given connection, you take the delta of the neuron at it is post-synaptic side and

you take the output of the neuron on it is pre pre-synaptic side and multiply these two

and multiply the product with a step size eta right, you know you have the update value

for the corresponding weight.

(Refer Slide Time: 36:23)

So, this algorithm is called a back propagation algorithm; because in this algorithm the

you have 2 passes. The input first goes all the way to the output in the forward pass and

reverse pass or  the back propagation  pass  right  the errors are  back propagated  from

output all the way to the first hidden layer. And then you update all the weights in one

shot.
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So, let us see how you can train an MLP on XOR problems, so, what you have done

before is we hand calculated all the weights and showed how an MLP can let learn exact

problem. So, in this case, we take a huge MLP this has so, 2 hidden layers. So, there is

one hidden layer here, which has 15 neurons; another hidden layer here, which has again

15 neurons. And then there is a input and you can see the inputs on the left and that is in

the single output Y and you have the exact data is given like this. So, these two yellows

belong to one class and the blues belong to the second class.

So if you train this network, let us see how it what happens. So, the reds and yellows that

you see in the moving animation on the right side, are the decision regions right. So, the

yellow region should fill the yellow dots and the blue region should fill the blue dots and

this already happened very quickly; it learns very quickly right. So, network is able to

learn this task.
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Now, let  us  look  at  a  more  complicated  problem.  So,  in  case  of  XOR,  it  is  more

complicated  than  the  you  know  it  is  linearly  non-separable,  but  it  is  still  not  very

complicated. So, take this example where there are 2 classes red and this is called the

double spiral problem. The 2 glasses consist of 2 sets of data right. One is this yellow

line, the yellow spiral, the other is the blue spiral ok. So, it is very hard to I mean you

cannot just draw a line and separate these 2 data sets right. So, it is a very hard problem

and let us see how a an MLP can solve this.

So, in this case MLP has only 1 hidden layer and it has just 15 nodes, a 15 neurons. So,

let us see how this learns it. So, again you see the 2 decision regions. The yellow region

should fill is suppose to fill ultimately; only the yellow points and the blue region should

fill only the blue points. But it did not happen you know it is. So, let us erase this ok. So,

in this case, now we are looking at much bigger net network because 3 hidden layers

each 750 neurons and this  is  this  kind of  getting there  very quickly. So,  the yellow

regions only fill the yellow part.

The next, we are looking at 5 hidden layers at each 750 neurons ok. This is learning very

quickly. So, you can see the yellow decision regions filling the yellow dots. We almost

there already right, it is it is a learnt you know it is learnt the yellow region is filled the

yellow dots completely and the blue regions are filled the blue dots completely.

So, you can see that an MLP with multiple layers can learn pretty complicated functions.
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So  that  is  what  is  nice  about  an  MLP. It  is  a  general  solutions  and  large  glass  of

problems.  So,  if  you  want  to  model  for  example,  something  that  is  happen  since

happening in  the  visual  system right,  you are looking at  an  image and you want  to

explain how it passes of image.

So, whether in the brain, we are looking at Visual processing or Auditory processing or

processing touch or Somatosensory processing, it is all done by the same set of neurons

right of similar neurons whereas, similarly, in case of MLP right, no matter what your

problem domain is, is the same kind of a network with same kind of neurons and in a

generalized architecture generalized learning rule can be applied to solve the problem.

So, that is one thing something that is very appealing about the an MLP.
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And also we have this theorem which guarantees that given enough number of hidden

neurons. The MLP can approximate arbitrarily complex you know target functions right.
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Now, also your back propagation algorithm also applies for arbitrary number of layers

and even if you have partial connectivity. The examples that we have seen here involve

full  connectivity;  that  means,  from every layer  to  the next  layer, all  the neurons are

connected.  Every  possible  connection  exists  whereas,  even  if  you  leave  out  some



connections right the same algorithm applies,  the only condition for the algorithm to

work is that there should not be any loops in the network.
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So, and then the network can be trained in parallel and it is been also what is interesting

for us right in this course is that the network can be has been applied a wide variety of

phenomena in psychology and neuroscience.
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But there is an drawbacks of this network model especially from neuroscience point of

view which is at the neuron model is too simple, I mean the real we have we have seen

what kind of assumptions we have made right and how far we have moved right from

realistic neuron with all the spiking activity and the kind of McCulloch and Pitts neuron

are where the output is simply 1 or 0.
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So, another artificial feature about the MLP is that it requires a teaching signal what is

called a signal that is the target vector right. So, we have seen that, if you want to train



the network read the whole target vector T. Whereas, Z is biologically an unrealistic you

know you do not have that kind of signal available in the brain to tell various neurons

how they should learn.
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Then another aspect of backdrop which is artificial is that it is biologically unreasonable

and  feasible  because.  So,  the  algorithm  involves  back  propagation  of  errors  right

downwards towards the input layer. Now, so, we know that synapse is a unidirectional

you know signaling structure. So, signal can only go from pre-synaptic side to the post-

synaptic side; because the new transmitter is present only on the presynaptic side and it

then goes to the pros post synaptic side. Whereas, in back propagation algorithm, you

want the signal to be able to go from output to the input and that is not possible.

So there people have tried to justify the back propagation algorithm by invoking certain

features of neurobiological like no back propagating action potential things like that, but

we  refer  into  those  details  at  this  point.  But  what  is  interesting  is,  even  this  very

simplified generalized networks that can explain certain phenomena from psychology

and neuroscience.

So,  what  we  will  do  in  the  next  segment  of  this  lecture  is,  we  will  take  several

phenomena  from psychology  and  neuroscience  and  show  how  the  networks  can  be

applied to these problems.


