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Lecture – 12 

Bioreactor analysis: chemostat and fed-batch 

 

Welcome to lecture 12 NPTEL online certification course on bioreactors. In the last 

lecture, we had solved one of the practice problems. 

(Refer Slide Time: 00:23) 

 

In this lecture number 12, let us continue the module 3 which is on analysis of the 

common bioreactor operation modes. In the earlier lecture, we saw the batch mode, in 

this lecture we will see the continuous mode and as mentioned earlier, the continuous 

stirred tank bioreactor is also called the chemostat- very common term used for the 

continuous stirred tank bioreactor. So, we will look at growth in a chemostat. The 

representation of a continuous stirred tank bioreactor or a chemostat is given above, you 

have the stirred tank, with the stirrer, the vessel, the broth or the liquid in which the cells 

are growing. The cells are actually magnified in this figure; you won’t be able to see the 

cell as individual cells normally. 



 

 

We have various measurement probes probably the DO, the pH and the temperature 

probes and we have aeration assuming that this is an aerobic bioreactor. Then there is a 

continuous stream of input and a continuous stream of output and let us say that the feed 

rate, the volumetric feed rate volume per time at the inlet is F i, the substrate 

concentration in the feed is S i and the cell concentration in the feed is x i. The same 

parameters in the outlet of the bioreactor F naught or F o. F o is the outlet feed rate 

volumetric feed rate volume per time, the S is the substrate concentration here and x is 

the cell concentration here and the volume of the broth, which we will take as the system 

is V, as you can see a part of this is being pulled out. So, the substrate concentration and 

the cell concentration here need to be the same as in the outlet stream because what is 

being inside well mixed is being pulled out. Therefore, the concentrations of these two 

would be the same. 

Now, let us define something called a dilution rate (D) as the volumetric feed rate (F) 

divided by the volume of the broth (V).  

𝐷 =
𝐹

𝑉
 

So, can you make sense of this certain feed rate divided by the volume? So, if you 

visualize it as certain feed rate divided by the volume, the dilution rate can be interpreted 

as the number of reactor volumes processed per unit time. So, it needs to have a unit of 

time inverse. Just think about it a little bit, see whether you are comfortable with the 

interpretation of number of reactor volumes per processed per time. Usually, there are no 

cells that are present in the inlet of the chemostat and this condition is actually called a 

sterile feed condition. In the feed there are no cells, it is sterile and therefore, it is a 

sterile feed condition. This is the usual mode of operation unless you are using a 

chemostat in a different way and so on, maybe attached to another chemostat or attached 

to another bioreactor. Those are different. Stand alone chemostats usually do not have an 

inlet cell concentration; they are just substrate in the inlet stream. 

Now, I would like you to understand this a little better, usually there is a lot of confusion. 

When the chemostats starts operation, we will have a vessel here you are starting in a 



 

 

feed here, there is nothing before that and so on. There will certainly be a difference 

between the inlet and outlet flows, we are not denying that. Therefore, till the flows can 

be adjusted which could probably take a few hours to be the same and for the conditions 

to settle down to the steady state conditions, there will be variations in the inlet and 

outlet. We are not looking at that period at all, those are the start up conditions where 

there will be unsteady state and there will be shutdown conditions. When you shutdown 

the bioreactor, it needs to be done in an appropriate fashion and then the process will not 

be a steady state. If you leave out these two which probably will be a short duration 

compared to the overall duration of the chemostat, most of the duration it is going to be 

at steady state and we are going to look only at the steady state part of the operation of 

the chemostat here, you need to keep this in mind. So, this is what is said here, the 

fraction of total operation time for start up or shut down is small. We will not consider 

the start up or shut down here, we are interested only in the steady state. When F, S, F is 

the volumetric feed rate, S is the substrate concentration at the outlet; x is the cell 

concentration in the outlet and the volume of the broth, all these variables do not change 

with time. This is the condition that we are going to analyze and which is the condition 

under which the continuous bioreactor or the chemostat will be in operation for most of 

its useful period.  

(Refer Slide Time: 06:25) 

 



 

 

The objectives of our analysis would be as follows: To obtain the conditions for steady 

state operation, to obtain the critical dilution rate the maximum operable dilution rate, to 

obtain an expression for cell productivity in a chemostat and compare it with the batch 

bioreactor productivity might be in for good amount of surprise here. 
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Let us begin the analysis. This is the same chemostat as was shown earlier, the inlet at Fi 

Si xi, usually xi is zero and the outlet at F0 the volumetric flow rate, S and x are the 

substrate and cell concentration respectively. Here the volume of the broth is V, which is 

also the system we have chosen indicated by these dotted and dashed lines and S and x 

are the same as in the outlet system as shown. Let us do a balance on the total mass the 

huge tools that we have is mass balance. So, this is the mass balance, by now we should 

be familiar with rate of input minus rate of output plus the rate of generation minus rate 

of consumption equals the rate of accumulation of mass we are doing it on total mass. 

𝑟𝑖 −  𝑟𝑜 +  𝑟𝑔 −  𝑟𝑐 =  
𝑑 (𝑚)

𝑑𝑡
 

Since we are doing it on total mass, there can be no generation, there can be no 

consumption, total mass is always conserved, therefore only input and output. We said 



 

 

that we are interested only in this steady state condition, thus any time derivative can be 

blindly set to zero. So, this term goes to zero by the definition of a steady state. 

Therefore, rate of input must equal the rate of output, this is total mass. 

𝑟𝑖 =  𝑟𝑜 

What is rate of input in terms of our volumetric flow rate? A volumetric flow rate is 

volume per time. We are looking at mass per time here therefore; if we multiply the 

volumetric flow rate by the density we would get our mass rate.  

 Therefore, 𝐹𝑖  𝜌𝑖  = 𝐹0 𝜌0 , 𝜌 is fluid density 

 𝜌𝑖 is the density of the incoming stream fluid, 𝜌0 is the density of the outgoing stream.. 

Usually, there is no difference in densities between these two streams. We are operating 

at room temperature and at standard conditions may be 30 degrees, 37 degrees c, one 

atmosphere pressure it is not easy to get a difference in densities between these two 

streams under those conditions and given the contents of the system. Therefore, 𝜌𝑖 and 

𝜌𝑜 can be canceled out. 

𝐹𝑖  𝜌𝑖 = 𝐹0 𝜌0 

𝐹𝑖   = 𝐹0 = 𝐹 

So, through a mass balance we got that the flow rates need to be equal. 
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Now, let us do a mass balance on cells over the same system, earlier it was total mass 

balance. Now we are going to do a mass balance on cells. This is the original equation,  

𝑟𝑖 −  𝑟𝑜 +  𝑟𝑔 −  𝑟𝑐 =  
𝑑 (𝑚)

𝑑𝑡
 

there is no input on cells it is a sterile feed, into the system therefore, r i is zero. There is 

no consumption of cells, there is no death of cells we will assume that. So, r c goes to 

zero and steady state any time derivative goes to zero. 

Therefore, we get 

𝑟𝑜 =  𝑟𝑔 

Therefore, the rate of the output must equal the rate of generation of cells. What is the 

rate of output? The volumetric flow rate times the cell concentration, you work this out 

in terms of units you will find that this is indeed mass of cells in the outlet stream, but 

the mass rate of cells in the outlet stream times the rate of generation which is mu x into 

V, mu x is the rate of generation of cells per unit volume on a volumetric basis. We need 



 

 

to multiply it by the volume to get on a mass basis, so  

𝐹 𝑥 =  (𝜇 𝑥) 𝑉  

So, if we transpose this equation and take x common out, you will get 

0 =  (𝜇 𝑥) 𝑉 − 𝐹𝑥 

0 =   (𝜇 −  
𝐹

𝑉
)  𝑥 

Replace F /V with D, the dilution rate, the number of reactor volumes processed per unit 

time.  

0 =   (𝜇 −  𝐷) 𝑥 

So, if the product of these two terms equals zero then that is possible only if any of these 

terms is zero or if both the terms are zero. 

Either  

(𝜇 −  𝐷) = 0 or x= 0 or both 

Only under those conditions will the equation be valid. 

Now, let us look at these two conditions, what does x = 0 mean? x is what? That is the 

cell concentration in the outlet stream, when x equals zero means there are no cells 

coming out in the outlet stream which is called a washout condition. It can actually 

happen in the case of a chemostat operation there might be no cells that are coming out 

and the reactor could be a steady state even under those conditions, but it is a useless 

condition. We will not be able to operate effectively under those conditions you know it 

is non-productive having no cells in the outlet so, this is the condition for steady state 

this is actually called the washout condition. 



 

 

Now, if we look at this mu equals d it says something very profound. Although it is a 

very simple equation here it says that the dilution rate determines the growth rate that is 

very profound because dilution rate is F/V. How do we change the dilution rate for a 

given reactor? For a given reactor the volume is fixed just by changing the flow rate the 

flow rate is under our control we change the flow rate of the pump the flow rate will 

change. So, just by changing the flow rate, we are able to change the specific growth rate 

the specific growth rate as you know is a biological parameter right. So, by changing an 

operational parameter which is the dilution rate by tweaking a knob, we are able to have 

a control over the growth rate of the organism which is a biological parameter that is 

something very, very profound here. So, an operational parameter F for a given V 

determines a biological parameter that is the significance of this equation. So, that will 

happen under steady state conditions of operation of a chemostat. So, if you want the 

cells to grow at a higher rate you just have to increase the flow rate and the cells will 

grow at a higher rate and till a certain point. 

(Refer Slide Time: 14:15) 

 

We did total mass, we did cells. Now, let us do a mass balance on the substrate over the 

same system same balance total. 



 

 

𝑟𝑖 −  𝑟𝑜 +  𝑟𝑔 −  𝑟𝑐 =  
𝑑 (𝑚)

𝑑𝑡
 

 In the complete balance equation, here we are going to focus on the substrate. There is 

an input, there is an output of the substrate. In these two streams, there is no generation 

of substrate, there of course is consumption and there is no accumulation because it is a 

steady state. All the time derivatives are zero. 

𝑟𝑖 −  𝑟𝑜 −  𝑟𝑐 =  0 

Let us recall that Y x/S is the amount of cells produced divided by the amount of 

substrate consumed.  

𝑌𝑥/𝑆 =   
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
 

Why are we doing this? The input rate we can write in terms of the flow rate and the 

substrate concentration in the feed whereas, here we do not really have a handle on the 

growth rate on the consumption rate of the substrate whereas, we have a handle on the 

growth rate of cells. So, we are using something to represent the consumption rate of the 

substrate in terms of the growth rate and we all know we have already used this in a 

problem, the yield coefficient Y x/S can do that. Let us see how we can do that. So, the 

rate of substrate consumption is nothing but the rate of cell production divided by Y x/S, 

Y x/S is amount of cells produced by amount of substrate consumed, we are looking at 

rate of substrate consumed. So, let us say we divide by time above and below we get rate 

of cells produced by rate of substrate consumed take it to the other side the rate of 

substrate consumed is rate of cells produced by Y x/S, that is what is given here. Now, 

what is rate of cell production? It is (𝜇𝑥)𝑉,  

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑌𝑥/𝑆
=  
(𝜇𝑥)𝑉

𝑌𝑥/𝑆
 



 

 

 So, the mass balance on the substrate becomes 

𝐹 𝑆𝑖  −   𝐹 𝑆  −
(𝜇𝑥)𝑉

𝑌𝑥/𝑆
 =   0 

Note that we derived that Fi = F0 = F. 

 So, if we consolidate the terms on appropriately, we have 

𝐹

𝑉
(𝑆𝑖 − 𝑆) =

(𝜇𝑥)

𝑌𝑥/𝑆
 

We know that 
𝐹

𝑉
= 𝐷 

Thus the eqution becomes 𝐷(𝑆𝑖 − 𝑆) =
(𝜇𝑥)

𝑌𝑥/𝑆
  

Since µ = D at steady state 

And we consider the effect of S on µ, i.e. 
𝜇𝑚𝑆

𝐾𝑆+𝑆
 =  µ =  𝐷 

𝜇𝑚𝑆 =   D (𝐾𝑆 + 𝑆) 

𝑆 (𝜇𝑚 − 𝐷) =   𝐷 𝐾𝑆 

𝑆 =   
𝐷 𝐾𝑆

(𝜇𝑚 − 𝐷)
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So, 

𝑌𝑥/𝑆 =   
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
=  

𝑥 𝑉

(𝑆𝑖 − 𝑆) 𝑉
=

𝑥

(𝑆𝑖 − 𝑆)
 

Thus 𝑥 = 𝑌𝑥/𝑆(𝑆𝑖 − 𝑆) , 

Substitute for S, 

𝑥 = 𝑌𝑥/𝑆 (𝑆𝑖 −
𝐷 𝐾𝑆

(𝜇𝑚 − 𝐷)
) 

When the washout occurs x →zero and there should be no change in substrate 

concentration from the inlet because it is not being consumed for the production of cells 

maybe little bit is taken up for maintenance, but that may not be very apparent. So S→Si 

Let the dilution rate at which washout occurs be Dc. While we are going through all 

these things let us also recall why we are doing these things? We are looking at 

conditions for the steady state operation. Objective of our analysis is to obtain conditions 



 

 

for steady state operation, to obtain the critical dilution rate the maximum operable 

dilution rate that is what we are looking at now through a lot of algebra. When we are 

doing the algebra it is good not to lose sight of this, that is why we need to remind 

ourselves is to what we are doing now. Let us get back, let the dilution rate at which 

washout occurs be Dc or the critical dilution rate.  

From the Monod model  

 
𝜇𝑚𝑆

𝐾𝑆+𝑆
 =   µ  

Since µ = D = Dc here and S→Si, the equation can be written as  

𝜇𝑚𝑆𝑖
𝐾𝑆 + 𝑆𝑖

 =   𝐷𝑐 

 (Refer Slide Time: 20:57) 

 

And if we plot the outlet concentration verses the dilution rate, it is this expression you 

know we are plotting the outlet concentration of cells which is given by this equation. 



 

 

𝑥 = 𝑌𝑥/𝑆 (𝑆𝑖 −
𝐷 𝐾𝑆

(𝜇𝑚 − 𝐷)
) 

If we convert this into a graph it is going to look something like this 

 

The drop is very steep and closer to the Dc. At the critical dilution rate actually there are 

no cells that are present in the outlet the cell concentration is zero and from the 

expression that we derived  

𝑆 =   
𝐷 𝐾𝑆

(𝜇𝑚 − 𝐷)
 

It reaches the substrate concentration in the inlet at the critical dilution rate. So, this is 

the range at which you can operate a chemostat. After critical dilution rate, there will be 

washout, there will be no cells and there will be no conversion of the substrate, there is 

no point in operating the chemostat there. 
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Now, the third objective if you recall we were going to compare the cell productivities of 

the chemostat with that of a batch bioreactor. To do that, let us see what the cell 

productivities are? Our interest is to usually general interest from an industry is to 

produce the maximum amount in the minimum possible time. The productivity is 

actually defined for that purpose, it is the amount produced per unit volume per unit 

time. In a chemostat the cell productivity is therefore, the amount of cells produced per 

unit volume per unit time if the cells happened to be the product. 

𝑐𝑒𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑣𝑜𝑙𝑢𝑚𝑒
 
1

𝑡𝑖𝑚𝑒
 

 Even otherwise the cells are producing a product you would also like to maximize the 

cell productivity because that would directly translate to the increase in production of the 

molecule inside the cell, more the number of factories more the product of interest too. 

Therefore, we are looking at cells themselves. If we represent the chemostat productivity 

by R of a chemostat it would be 

𝑅𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡 =   𝑥  𝜇 = 𝑥 𝐷 



 

 

 

Since the cells produced by unit volume is x, one by time is µ. 

(Refer Slide Time: 23:31) 

  

And graphically, we have 

 



 

 

The cell concentration variation with d was as we have already seen. The productivity 

will go on increasing till it reaches a maximum productivity at Dm and then it will 

actually drop till the point of the critical dilution rate where it becomes zero. Where the 

cells are coming out, the productivity needs to be zero there.  

(Refer Slide Time: 24:28) 

 

Let us find out the dilution rate Dm at which the cell productivity r is maximum. We are 

interested in maximum productivity; let us compare maximum productivities possible.  

For a function, we know the conditions for a maximum, mathematically.  

For example, for a function 𝑅 = 𝑓(𝐷), then at the maxima 

𝑑𝑅

𝑑𝐷
= 0;       

𝑑2𝑅

𝑑𝐷2
 <  0 

 

Cell productivity R can be given by 

𝑅 =  𝜇𝑥 

In a chemostat, 𝜇 = 𝐷 

Therefore  𝑅 =  𝐷𝑥 

Substituting for x 



 

 

𝑅 =  𝐷𝑌𝑥
𝑠
(𝑆𝑖 − 𝑆) 

Substituting for S in terms of D 

𝑅 =  𝐷𝑌𝑥
𝑠
(𝑆𝑖 − (

𝐷𝐾𝑠

𝜇𝑚−𝐷
)) ………………………….. (1) 

It is known that for a function, 𝑅 =  𝑓(𝐷), 

The conditions for maxima are 

𝑑𝑅

𝑑𝐷
= 0   and  

𝑑2𝑅

𝑑𝐷2
= 0 

Therefore for maximum cell productivity  
𝑑𝑅

𝑑𝐷
= 0    

Substituting for R from (1) 

𝑑 (𝐷𝑌𝑥
𝑠
(𝑆𝑖−(

𝐷𝐾𝑠
𝜇𝑚−𝐷

))

𝑑𝐷
= 0    

𝑑

𝑑𝐷
(𝐷𝑌𝑥

𝑠
 𝑆𝑖 − 

𝐷2𝑌𝑥
𝑠
𝐾𝑠

𝜇𝑚−𝐷
) = 0   

𝑑

𝑑𝐷
(𝐷𝑌𝑥

𝑠
 𝑆𝑖) −

𝑑

𝑑𝐷
(
𝐷2𝑌𝑥

𝑠
𝐾𝑠

𝜇𝑚−𝐷
)  = 0   

𝑌𝑥
𝑠
 𝑆𝑖 − 𝑌𝑥

𝑠
 𝐾𝑠 ( 

2𝐷(𝜇𝑚 − 𝐷) − 𝐷
2(−1)

(𝜇𝑚 − 𝐷)2
) =  0 

  

𝑆𝑖 − 𝐾𝑠 ( 
2𝐷𝜇𝑚 − 𝐷

2

(𝜇𝑚 − 𝐷)2
) =  0 

Multiplying throughout with (𝜇𝑚 − 𝐷)
2 

𝑆𝑖 (𝜇𝑚 − 𝐷)
2 = 𝐾𝑠( 2𝐷𝜇𝑚 − 𝐷

2) 

𝜇𝑚
2 + 𝐷2 − 2𝐷𝜇𝑚 = 

𝐾𝑠( 2𝐷𝜇𝑚 − 𝐷
2)

𝑆𝑖
 

𝐷2 (1+
𝐾𝑠
𝑆𝑖
) − 2𝐷𝜇𝑚 (1 +

𝐾𝑠
𝑆𝑖
)+ 𝜇𝑚2 = 0 

Which is a quadratic equation in D, 

Solving for D, 

 

𝐷 =  

2𝜇𝑚 ± (4𝜇𝑚
2 −

4𝜇𝑚
2

(1 +
𝐾𝑠
𝑆𝑖)
)

0.5

2
 

 



 

 

𝐷 =  𝜇𝑚 (1 − (1 −
1

(1 +
𝐾𝑠
𝑆𝑖)
)

0.5

) 

 

𝐷 =  𝜇𝑚 (1 − (1 −
𝑆𝑖

𝑆𝑖 + 𝐾𝑠
)
0.5

) 

𝐷 =  𝜇𝑚 (1 − (
𝐾𝑠

𝐾𝑠 + 𝑆𝑖
)
0.5

) 

 

Therefore dilution rate Dm, at which maximum cell productivity can be obtained is given 

by 

𝐷𝑚 = 𝜇𝑚 (1 − (
𝐾𝑠

𝐾𝑠 + 𝑆𝑖
)
0.5

) 
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And that is what we have here; this is just transposed to take the other term one term to 

the other side. Now, we can cancel out the Y x S and again represent it appropriately 

multiply both sides by mu m minus D squared we get this, then we get the semblance of 

quadratic equation in D mu m D K S by S i equals, if you expand this a minus b squared 



 

 

is a squared To ensure that is the maximum, not a minimum we actually need to check 

whether the second derivative is less than zero. 

𝑑2𝑅

𝑑𝐷2
 <  0 

If 𝐾𝑆 ≪   𝑆𝑖,   (
𝐾𝑆

𝐾𝑆+ 𝑆𝑖
)  → 0 

Then,  

𝐷𝑚 = 𝜇𝑚 (1 − (
𝐾𝑠

𝐾𝑠 + 𝑆𝑖
)
0.5

) =  𝜇𝑚 (1 − 0) =  𝜇𝑚  

 (Refer Slide Time: 30:28) 

. 

Let us look at the cell concentration at Dm, if x m is the cell concentration obtained 

when the cell productivity is maximum then we can get an expression for xm by 

substituting the relevant variables in the equation. The corresponding variables if you 

substitute in the expression for x m, we should get the appropriate expression. We know 

that x m is the cell concentration at the maximum productivity. So, all the other variables 

should also correspond to the maximum productivity variables. D should actually be D m 

here, the rest are the same  



 

 

𝑥𝑚 = 𝑌𝑥
𝑆
(𝑆𝑖 −

𝐷𝑚 𝐾𝑆
(𝜇𝑚 − 𝐷𝑚)

) 

 So, that there is no change, here D has become D m, here KS is the constant, 𝜇𝑚 is 

constant and D has become Dm here. So, substituting the expression for Dm into the 

above we get: 

𝑥𝑚 = 𝑌𝑥/𝑆

(

  
 
𝑆𝑖 −

(𝜇𝑚 (1 −  (
𝐾𝑆

𝐾𝑆 +  𝑆𝑖
)
0.5

))  𝐾𝑆

(𝜇𝑚 − 𝜇𝑚 (1 −  (
𝐾𝑆

𝐾𝑆 +  𝑆𝑖
)
0.5

))
)

  
 

 

 This is the expression for the maximum cell concentration. 
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This can be simplified the first few steps are shown here, this is the starting expression  



 

 

𝑥𝑚 = 𝑌𝑥/𝑆

(

  
 
𝑆𝑖 −

(𝜇𝑚 (1 −  (
𝐾𝑆

𝐾𝑆 +  𝑆𝑖
)
0.5

))  𝐾𝑆

𝜇𝑚 (1 − (1 −  (
𝐾𝑆

𝐾𝑆 +  𝑆𝑖
)
0.5

))
)

  
 

 

For simplicity,  𝐿𝑒𝑡 𝐴 = (
𝐾𝑆

𝐾𝑆+ 𝑆𝑖
)
0.5

 

Then xm becomes 

𝑥𝑚 = 𝑌𝑥/𝑆 (𝑆𝑖 −
(1 − 𝐴)𝐾𝑆

𝐴
) 

= 𝑌𝑥
𝑆
(
𝐴𝑆𝑖 –𝐾𝑆+𝐴𝐾𝑆

𝐴
) 

= 𝑌𝑥/𝑆 (
𝐴(𝑆𝑖+𝐾𝑆) −𝐾𝑆

𝐴
)…….. to finally get 

𝑥𝑚 = 𝑌𝑥/𝑆 {(𝑆𝑖 +  𝐾𝑆) −  (𝐾𝑆(𝐾𝑆 +  𝑆𝑖))
0.5
}  = 𝑌𝑥/𝑆 (𝐾𝑆 +  𝑆𝑖) {1 −  (

𝐾𝑆
𝐾𝑆 +  𝑆𝑖

)
0.5

} 

This is the expression for the maximum cell concentration.  

𝑊ℎ𝑒𝑛 𝐾𝑆 ≪   𝑆𝑖, then  (
𝐾𝑆

𝐾𝑆+ 𝑆𝑖
)  → 0, therefore 𝑥𝑚 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

𝑥𝑚 = 𝑌𝑥
𝑆
 𝑆𝑖 

Consequently the productivity Rm would be 

𝑅𝑚 =  𝐷𝑚𝑥𝑚 =  𝜇𝑚(𝑌𝑥/𝑆 𝑆𝑖) 
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Let us look at some typical values to get an idea:  

 

In yeast, typical values are 

µm = 0.5 h
-1

,  𝑌𝑥
𝑆
 = 0.5 

So for an inlet substrate concentration Si = 50 gl
-1 

, the maximum productivity would be
 

R
m

 = 12.5 gl
-1

h
-1

 

Similarly for mammalian cells, the typical values are µm = 0.05 h
-1

,  𝑌𝑥
𝑆
 = 0.1, thus for   

Si = 5 gl
-1

, R
m

 = 0.025 gl
-1

h
-1

 

So, here you get 12.5 gram per liter per hour as a typical productivity in yeast and only 

0.025 gram per liter per hour in mammalian cells. You see the change in the magnitudes. 
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Now, let us compare productivities of continuous and batch operations. Let us take the 

maximum possible productivity in each case and let us see what the ratio. For the batch, 

we know the maximum possible cell concentration is 𝑆𝑖𝑌𝑥/𝑆. 

 Time for the batch is 

𝑡 =
1

𝜇
ln (
𝑥𝑚
𝑥0
) + 𝑡0 

Assuming no lag phase, we have  

𝑡 =
1

𝜇
ln (
𝑥𝑚
𝑥0
) 

When we assume that 𝐾𝑆 ≪   𝑆, µ = 𝜇𝑚  

I am doing all this to get an idea of the ratio of productivities if the lag time is 

significant. We can always add them for comparison; I am trying to do that on a generic 

basis. So, I am taking the simplest case that is possible, but which is still representative.  



 

 

So, the productivity of batch is the maximum possible cell concentration divided by the 

time that it takes for the batch, i.e. the amount produced per unit volume per unit time. 

𝑅𝑏𝑎𝑡𝑐ℎ =   
𝑆𝑖𝑌𝑥/𝑆 

1
𝜇𝑚
ln (
𝑥𝑚
𝑥0
)  

 

 This is the productivity expression for a batch starting from x0 going up to xm. 
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Now, for the chemostat case we already seen that the maximum productivity is 

𝑅𝑚 =  𝜇𝑚(𝑌𝑥/𝑆 𝑆𝑖) 

 Therefore, the ratio of the maximum productivities of a chemostat to that of batch is: 

𝑅𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡
𝑅𝑏𝑎𝑡𝑐ℎ

 =   
𝜇𝑚(𝑌𝑥/𝑆 𝑆𝑖)

𝑆𝑖𝑌𝑥/𝑆 

1
𝜇𝑚
ln (
𝑥𝑚
𝑥0
)  

  =  ln (
𝑥𝑚
𝑥0
) 



 

 

 Typically in a batch situation you have the maximum cell concentration being about 10 

to 30 fold the initial cell concentration.  

Since (
𝑥𝑚

𝑥0
) is usually 10 to 30 in a batch 

𝑅𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡
𝑅𝑏𝑎𝑡𝑐ℎ

= 3 𝑡𝑜 4 

Thus the ratio of the maximum productivities of a chemostat to that of a batch is three to 

four. This says that, inherently, the chemostat is three to four times more productive than 

a batch reactor. So, this is by the very nature of it. This is also profound kind of insight 

that we get from this analysis. The chemostat is three to four times more productive than 

a batch usually speaking.  

So, in industry we can expect to be three to four times more productive by switching to a 

continuous operation, but operating in a continuous mode requires a lot more effort than 

operating in a batch mode that is the reason why industries prefer a batch except if it is 

completely automated in so and so forth, then some industries have switch to continuous 

might want to internalized this by going through this again we have shown that a 

continuous bioreactor is inherently three to four times more productive than a batch 

bioreactor. 
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Let us see a practice problem, I will assign this problem and solve it in the next lecture. 

We will continue after this problem also, this fed batch operation which I would like to 

complete as a part of this particular lecture itself. The practice problem reads as follows 

processed fungi are good biosorbents for toxic trace metals and thus they can be used to 

remove chromium, mercury, cobalt and other heavy metals from industry effluents a 

suitable fungus needs to be produced at 500 grams per hour. For the above purpose, the 

growth limiting substrate concentration at the inlet of a chemostat to produce fungus is 

50 grams per liter, the fungus follows Monod kinetics and the maximum specific growth 

rate is 0.5 hour inverse the substrate concentration that corresponds to the half maximal 

growth rate is 1 gram per liter it is aerobic growth with a cell yield coefficient from 

substrate of 0.5 find the minimum size of a chemostat needed for the above for a given 

inlet volumetric flow rate. So, why do not you try this out? We know of course, see the 

solution in the next lecture. 

 Now let us continue. 



 

 

(Refer Slide Time: 42:05) 

 

The fed batch operation. How to analyze the fed batch operation? As you recall, fed 

batch is nothing but intermittent addition, intermittent removal, together or one at a time. 

There is a reason for doing the fed batch operation. In fact, that is the most common 

mode in an industry. We have already seen that the fed batch operation is preferred under 

some conditions such as minimizing the deleterious effect of a metabolite formed during 

the cultivation or when some special feed strategies need to be implemented. This is one 

of the situations where one would prefer a fed batch operation and let us analyze this 

operation with an aim to obtain the cell concentration at any time t, when there is only 

input. I am just taking one simple case to analyze, to just start you on the analysis, it can 

get a lot more complex as long as you know the functionality you would be able to solve, 

you will be able to get expressions and solve them towards your needs later. So, in this 

case there is only input, there is no output. The let us say that Fi as a function of t is the 

volumetric feed rate of the entering stream and xi(t) is the cell concentration in the 

entering stream, just for generalization. It is not a sterile feed and rx is the cell growth 

rate on a volumetric basis. 

If we do a material balance on cells with the bioreactor contents or the bioreactor broth 

as a system, this is the overall balance equation. 



 

 

𝑟𝑖 −  𝑟𝑜 +  𝑟𝑔 −  𝑟𝑐 =  
𝑑 (𝑚)

𝑑𝑡
 

There is no output, there is only input. Let us assume there is no consumption of cells. 

This is not a steady state, so 
𝑑 (𝑚)

𝑑𝑡
  cannot go to zero.  

Therefore  𝑟𝑖 +  𝑟𝑔 =  
𝑑 (𝑚)

𝑑𝑡
 

Substituting for the terms, 

𝐹𝑖(𝑡)𝑥𝑖(𝑡) +  𝑟𝑥𝑉 =   
𝑑(𝑥𝑉)

𝑑𝑡
 

𝐹𝑖(𝑡)𝑥𝑖(𝑡) +  𝑟𝑥𝑉 =   𝑥 
𝑑(𝑉)

𝑑𝑡
+ 𝑉 

𝑑(𝑥)

𝑑𝑡
………………………(𝑖) 
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Now, we no longer have that niceness of something being constant, all the terms are 

there. So, Fi is a function of t, xi is a function of t . V is not a constant right. So, all these 



 

 

terms are still there. Except the term  
𝑑(𝑉)

𝑑𝑡
 , we can handle the rest of the terms. We know 

the inlet feed rate as a function of time, we know the inlet cell concentration as a 

function of time, we know rate of cell formation and we know the volume of the 

bioreactor. So, this is the only term that we need to handle to get a handle on this 

equation.  

To do that, let us try a total mass balance on the bioreactor broth. 

𝑟𝑖 −  𝑟𝑜 +  𝑟𝑔 −  𝑟𝑐 =  
𝑑 (𝑚)

𝑑𝑡
 

In the total mass balance, there is no output, no generation of mass, no consumption. So 

all these terms go to zero and therefore, 

𝑟𝑖 =  
𝑑 (𝑚)

𝑑𝑡
 

Substituting, 

𝐹𝑖(𝑡)𝜌𝑖 =   
𝑑(𝜌𝑉)

𝑑𝑡
 

Usually the inlet and outlet densities are the same and a constant therefore, we can take 

them out of the derivative. 

𝐹𝑖(𝑡)𝜌 =   𝜌
𝑑(𝑉)

𝑑𝑡
 

𝐹𝑖(𝑡) =  
𝑑(𝑉)

𝑑𝑡
 

Substituting for 
𝑑(𝑉)

𝑑𝑡
 in (i), we have 



 

 

𝐹𝑖(𝑡)𝑥𝑖(𝑡) +  𝑟𝑥𝑉 =   𝑥𝐹𝑖(𝑡) + 𝑉 
𝑑(𝑥)

𝑑𝑡
 

𝐹𝑖(𝑡)(𝑥𝑖(𝑡) − 𝑥) +  𝑟𝑥𝑉 =   𝑉 
𝑑(𝑥)

𝑑𝑡
 

𝐹𝑖(𝑡)

𝑉
(𝑥𝑖(𝑡) − 𝑥) +  𝑟𝑥 =   

𝑑(𝑥)

𝑑𝑡
 

If these functionalities are known, then we can solve this to get the cell concentration 

profile in the fed batch bioreactor. We will stop here for this module.  

In fact, we have completed this module on bioreactor analysis, the common modes of 

operation. We initially saw the batch bioreactor, analyzed them, analyzed the batch 

bioreactor towards getting some useful estimates and then we looked at the continuous 

operation, a problem has been assigned, please do that, and finally, we looked briefly at 

how to handle fed batch operation.  

 


