
Bioreactors 

Prof G. K. Suraishkumar 

Department of Biotechnology 

Indian Institute of Technology, Madras 

 

Lecture - 10 

 Batch growth kinetics 

 

Welcome to lecture number 10, for the NPTEL online certification course on bioreactors, 

the 10-hour course. Today, we will a begin module 3 which is on analysis of common 

bioreactor operating modes. Let me maximizes the screen here. 
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Analysis of common bioreactor operating modes. 
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Let us first recall the common bioreactor operating modes that we saw in the previous 

module. We first saw batch as the operating mode. A batch is nothing but, you add 

everything in and then at start time everything is already there, this no addition or 

removal. The process takes place inside the batch reactor with no addition or removal 

and at the end of the batch time you take the contents out and go for processing. The 

batch time begins when everything, after everything has been added and the batch time 

ends before things are removed, that is the batch mode of operation. 

We also saw the continuous mode of operation, where there is a continuous stream in and 

a continuous stream out of the bioreactor and the processes simultaneously take place 

when there is a continuous flow that is happening. In between the two, hence, the batch 

and the continuous we had the Fed-batch where you could start out as a batch and then 

you could have intermittent feeding or intermittent removal or even continuous feeding 

and continuous removal or both, you know as long as it is not both continuous in and 

continuous out simultaneously any combination is called, any other combination is called 

a fed-batch. These are the 3-common bioreactor operating modes the batch, the 

continuous and the fed-batch. Let us look at the analysis some basic analysis of these 

modes and such an analysis would help us answer design kind of a question. Questions 

such as, how long do we need to operate the bioreactor for, for a particular desired goal? 



and so on. That would be a very basic design question that one would want to ask. And 

then, based on that there could be other complex design questions that one can answer 

through such analysis.  
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In this lecture, let us focus on the Batch bioreactor. The Batch bioreactor, we are first 

taking up because it is a very common mode of operation especially in the industries. It 

is very powerful that way, simple but powerful. It is easy to operate compared to the 

other modes and that is one of the reasons why it is preferred in the industry, the batch 

mode of operation. What is shown here, is some of our own data from our lab, a long 

time ago, this is total cell concentration. Remember, we talked about total cell 

concentration and viable cell concentration. This is total cell concentration which has 

been measured through what we called OD actually, cell scatter and then calibrated and 

we have used a calibration curve to convert OD to gram per liter. I think this is 

Xanthomonas campestris if I remember, right. I just took one representative batch 

growth. The total cell concentration in gram per liter is on the y axis, the time of growth 

is on the x axis. As we can see till about, let us say 5, 6 hours, there is no change in the 

total cell concentration. Around 6 hours, the cell concentration starts to increase till about 

28 hours and then it goes flat. The phase in which, the initial phase in which there is no 

change in the cell concentration - total cell concentration is called the lag phase. The 



region where the cell concentration changes rapidly is called the log phase, we’ll look at 

the reason a little later. And then, it reaches what is called a stationary phase where there 

is no increase in cell concentration. 
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In slight contrast, let us look at the viable cell concentration profile for the same 

organism. The viable cell concentration gram per liter is given here, time in hours, this is 

a total cell concentration, the scale is pretty much the same 0 to 3, here again zero to 

three, but this is viable cell concentration. This was most likely obtained by the plating 

method, Xanthomonas plating method. As we can see, there is a good over lap of the 

viable cell concentration with the total cell concentration here right, in this region here 

till about this region and till about here, there is a good over lap. And then at around 40 

hours, it starts going down as expected because the viable cell concentration would 

dropp here, after some time the stationary phase you enter the death phase which will 

show up in the viable cell concentration profile. It does not show up for a long time in 

the total cell concentration profile. That is actual data. 
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So, that is a simple batch where probably there was one limiting substrate, one main 

substrate and the cells grew on that substrate most likely glucose. There is another type 

of growth that is sometimes seen which is called the diauxic growth, sometimes they call 

it diauxy and so on so fourth. Which essentially arises, because of sequential utilization 

of substrates one after the other - sequential utilization. 

For example, if there is a mixture of glucose and lactose. Let us say for a typical 

organisms such as Eschericia coli. Then glucose is preferred over lactose and consumed 

first. There is a well known mechanism for this to happen. In molecular terms it is known 

the lac operon, so on so fourth. We will not get into that; we understand very well why 

this happens in E. coli. However, for our purposes the growth curve would look like this. 

If you plot total cell concentration x versus time, there is an initial lag phase and then 

there is a log phase and then this seems like stationary phase, but it is a actually 

secondary lag phase and then growth occurs. And when you do the analysis of glucose 

and lactose, one finds that glucose gets consumed here first and then lactose gets 

consumed. As you can see the growth rate, which you would get out of this, which will 

we see how to get, would be higher here compared to the growth rate on lactose. The 

specific growth rate on glucose would be higher than the specific growth rate on lactose 

that is the usual way in which happens. The preferred substrate gets taken up first with a 



typically higher growth rate, specific growth rate followed by the other substrate. This is 

also seen and it is good to know this, even in an introductory course. 

Having said this for our analysis, let us focus on simple batch growth that we saw earlier. 

One organism, one substrate and so on so fourth, one limiting substrate. 
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Batch growth, as we saw with real data. Cell concentration versus time, a lag phase, 

something called a log phase and a stationary phase. And if you plot viable cell 

concentration you would also see a death phase, where the viable cell concentration goes 

down. The solid line is the total cell concentration, the dotted line or the dashed line is 

the viable cell concentration.  

Now, let us do a mass balance on cells in the bioreactor broth. The bioreactor broth - the 

liquid in the bioreactor is what we are going to take as our system, to do this mass 

balance on cells. This is our equation that we have seen right from module 1, these are 

mass rates. Mass rate of input minus mass rate of output plus rate of generation minus 

rate consumption all on a mass basis equals the rate of accumulation of mass. Since, we 

are doing the balance on cells this would be written for the mass of cells in the batch 

bioreactor.  



 

𝑟𝑖 −  𝑟𝑜 +  𝑟𝑔 −  𝑟𝑐 =  
𝑑 (𝑚)

𝑑𝑡
 

Since, it is batch and let us consider only the growth, this phase for let us say only this 

phase for now, in other words there is no death that we are going to consider. There is no 

rate of input, there is no rate of output because it is a batch, that is the basic definition of 

a batch. And because there is no death, there is no consumption of cells and therefore, r i, 

r o and r c are 0, those 3 rates are zero. Therefore, r g which is the growth rate on a mass 

basis equals d m dt here. 

𝑟𝑔 =
𝑑 (𝑚)

𝑑𝑡
 

If we replace m in terms of cell concentration because the cell concentrations are the 

ones that are easily measured. We would like to write things in terms of measured 

quantities because those are the ones that are measured and they can be used to make 

decisions. So, r g on a mass basis is d dt of m which can be written as x into V, cell 

concentration is mass of cells for unit volume times the volume of the system or the 

broth that would be m. 

𝑟𝑔 =
𝑑 (𝑚)

𝑑𝑡
=

𝑑 (𝑥 𝑉)

𝑑𝑡
  

 And in the case of batch growth there is no change in the volume of batch right, there is 

no addition, there is no a depletion or taking away things from the batch and therefore, 

volume remains constant. If volume is a constant, it is not going to change with time and 

therefore, V can be taken out as a constant here, out of this derivative and therefore, it 

becomes V times d x dt.  

𝑟𝑔 =  
𝑑 (𝑥 𝑉)

𝑑𝑡
 =   𝑉 

𝑑𝑥

𝑑𝑡
  



Now, if r x is the rate on a volumetric basis, again those are the ones that are directly 

measured. So, we will write it in terms of them. Then r x into V would be equal to r g, 

you know this is the, on a concentration or a volumetric basis this is the rate, in other 

words the rate of change of cell concentration with time is what r x is. Therefore, rate of 

change, of cell concentration times the volume would be the rate of change of mass 

concentration sorry rate of change of mass not a concentration rate of change of mass. 

Therefore, r x times V equals r g and that equals V d x dt from here. So, if we equate this 

and this r x is nothing but, d x dt.  

𝑟𝑥 𝑉 =   𝑟𝑔 =  𝑉 
𝑑𝑥

𝑑𝑡
 

𝑟𝑥 =   
𝑑𝑥

𝑑𝑡
 

So, under the special case of the batch bioreactor, the volumetric rate equals the rate of 

accumulation of the cell concentration. This we have already seen as a special case of 

balance. And we also said that this is the way you would have been introduced in your 

school and that is rather limited to the batch case and do not take it forward. This aspect 

will become clear when we discuss continuous processes. The concept of a rate is a lot 

more general where as the rate being equal to an accumulation rate is valid only for a 

batch system. 
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One of the common models for growth rate that we have already seen; in fact the first 

model that we saw was r x, you know this is on a volumetric basis r x equals mu x or in 

this case d x dt. 

𝑟𝑥 =   𝜇 𝑥      𝑜𝑟   ℎ𝑒𝑟𝑒,   
𝑑𝑥

𝑑𝑡
 = 𝜇 𝑥 

The accumulation rate equals mu x we are replacing d x, sorry we are replacing r x with 

d x dt, d x dt equals mu x. In fact, mu can be defined in such a situation or here as 1 by x, 

d x dt even it becomes easier to see the meaning of the term, that is the reason I have 

given it here, it is still, the meaning of the term is still valid. It is just easier to see it here 

1 by x, d x dt. It has been normalized with respect to cell concentration and therefore, it 

is called the specific growth rate.  

1

𝑥

𝑑𝑥

𝑑𝑡
 = 𝜇  



This model can be used to describe batch growth, but in parts. These are the various parts 

of the batch growth that we have seen, the variation of cell concentration with time the 

lag, the log and the stationary phase.  

In the lag phase, mu is 0 you know d x dt is 0, there is no change in the cell 

concentration. In the log phase which is here, which is probably what you have been 

exposed to so far, mu happens to be a constant. And in the stationary phase, again there is 

no change in cell concentration therefore, mu is 0. 

There are some phases in between the late log phase, the early log phase or the early 

stationary phase as it is called here. These phases are not very clearly described by this 

equation, but it may not be very necessary to know them or to describe them for our ends 

to make a design decisions and therefore, we will not get into that. There are ways of 

doing them, there are ways of including them in the mathematical representation, we will 

not look into those aspects in this particular course. 
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Now, let us consider the log phase alone. That is where we are going to focus on. The 

reason will become clearer as we go along. In the log phase, mu is a constant. Therefore, 

dx dt equals mu x, mu can be taken to be a constant here. 



𝑑𝑥

𝑑𝑡
 = 𝜇 𝑥 

 If we solve this straight forward first order differential equation, you know the first order 

differential equation you need at least 1 initial condition to solve. So, the initial condition 

is as follows at time t equals t 0 which is the beginning of the log phase, its not the 

beginning of the batch, it is the beginning of the log phase, the cell concentration is x 

zero. x zero may not be very different from the concentration at the start of the batch but, 

sometimes there might be a difference. It has not changed much, but it has changed a 

little bit. So, you need to keep, you need to have clarity on what x zero actually is 

because this model where mu is a constant is applicable only to the log phase not to any 

other phase.  

So, if we go about solving this equation, just a few steps, I have written down the steps 

here. 

𝑑𝑥

𝑥
 = 𝜇 𝑑𝑡 

Integrate both sides we get the integral of dx by x as ln x and here it is straight forward 

mu t plus c in definite integral.  

∫
𝑑𝑥

𝑥
 =   ∫ 𝜇 𝑑𝑡 

ln 𝑥  =   𝜇 𝑡 + 𝑐 

We have the initial condition here which can be used to evaluate c if you put in the initial 

condition at time t equals t zero, x equals x zero. Therefore, ln of x equals mu t zero plus 

c or c equals ln of x zero minus mu into t zero, this is our c. 

ln 𝑥0 −  𝜇 𝑡0 = 𝑐 



So, if you substitute it back into the expression here, the solution becomes: 

ln 𝑥  =   𝜇 𝑡 + ln 𝑥0 −  𝜇 𝑡0 

If we combine similar terms on either side, then ln of x minus ln of x naught, which turns 

out to be:  

ln (
𝑥

𝑥0
) =  𝜇 (𝑡 −  𝑡0) 

And therefore, x equals:   

𝑥 =  𝑥0 𝑒𝜇 (𝑡 − 𝑡0) 

This is the description of the variation in cell concentration x with time. Since, this is 

exponential and this is a log we call the phase as either an logarithmic phase which 

corresponds to this or an exponential growth phase which actually describes the variation 

of cell concentration with time. That is actually why it is called the log phase. This 

equation can be used to find the time needed to reach a desired cell concentration. That is 

a straight forward design application. 
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. 

If the parameters mu t naught which is the lag phase time and x naught which is the 

concentration at the beginning of the log phase which may not be very different from the 

initial cell concentration, we can predict the total time from the start of the batch t to 

reach x as this. It is 1 by mu ln of x by x naught, this is what we get from our previous 

thing here. 1 by mu ln of x by x naught, if t naught can be taken as a zero plus our t 

naught which is the time that the batch spends in the lag phase. So, lag time it is here this 

is the time for logarithmic growth starting from x zero to reach x this would be the total 

time of the batch, if we are interested in reaching a certain cell concentration x beginning 

with the cell concentration of about x zero. I am assuming that there is no change in cell 

concentration in the lag phase. 

1

𝜇
ln (

𝑥

𝑥0
) + 𝑡0 = 𝑡 

Having said this, let me assign this problem here we. Will continue a little bit more. We 

will continue and do a little bit more in this lecture itself for completeness, but I would 

like you to work this out at the end of this lecture to get some practice in the batch 



bioreactor analysis. The problem reads in a batch bioreactor the concentration of the 

inoculum was 0.5 gram per liter, this is the initial cell concentration. The lag phase 

usually lasts 20 minutes under these conditions. Assuming that the cell concentration at 

the start of the log phase was not significantly different from that immediately after 

inoculation, (a)estimate the time needed for it to reach 4 gram per liter. The specific 

growth rate for this organism under these conditions is 0.5 hour inverse. (b)what is the 

time needed for the cell concentration to double in the log phase? This is the problem. 

Please work it out. It is an application of the earlier derived equation, we will of course 

see the solution in the next lecture. 
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Let us continue now, the initial analysis, what we have done so far, did not consider the 

effect of substrate on the specific growth rate mu. We had kind of tacitly assumed that 

enough substrate was present, so that mu equals mu m, you know mu versus S, mu 

changes when the S changes in the initial stages and then reaches constant value or an 

asymptotic value mu m, when the substrate concentration is above a certain level. We 

kind of assumed that we always had enough substrate so that, we were always at mu m 

for the specific growth rate. This need not always be the case and we have seen this. This 

is the mathematical representation of the variation, the monod model of mu's variation 

with S, the specific growth rate is a mu m times s by K s plus S. 



𝜇 =   
𝜇𝑚 𝑆

𝐾𝑆 + 𝑆
 

This variation would effect the growth rate and therefore, that will ultimately effect the 

time that it takes to achieve a certain cell concentration in batch, if it is possible. 
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If we incorporate the effect of the substrate, for the log phase, the mu needs to be 

replaced by mu m S by K s plus S. So, dx dt equals mu x is still valid. Only the mu has 

been replaced with the substrate effect, to include the substrate effect mu m S by excuse 

me K s plus S.  

𝑑𝑥

𝑑𝑡
 = (

𝜇𝑚 𝑆

𝐾𝑆 + 𝑆
)  𝑥 

Now, let us consider two cases for ease of analysis. The first case, is that the substrate 

concentration is much, much greater than the K s value. 

𝑆 ≫ 𝐾𝑆 



Recall this K s is the substrate concentration at which we got half maximal growth rate. 

What we are saying is that we are somewhere here were the substrate concentration is 

much higher than K s, that is the condition that we are looking at first. If that is the case, 

then S is approximately equal to K s. I will tell you how this happens, mathematically. K 

s and S, they are added in the denominator. If s is much, much greater than K s let us say, 

just to illustrate that, K s is 1 and S is 1000, whether it is 1000 in the denominator or 

whether it is 1001 in the denominator, it is not going to make of a much difference to the 

value of this mu. So, you can very safely replace K s plus s with just s alone, if s happens 

to be much, much greater than K s. If we replace the denominator by s you have mu m s 

by S, S S can be canceled and you will be left with mu m alone and that is what is shown 

here.  

𝐼𝑓  𝑆 ≫ 𝐾𝑆, 𝑡ℎ𝑒𝑛 
𝜇𝑚 𝑆

𝐾𝑆 + 𝑆
=

𝜇𝑚 𝑆

𝑆
=  𝜇𝑚 

Which is exactly the same case as earlier, only thing is that instead of saying dx dt equals 

to mu x we could directly say dx dt equals mu m x, we had actually tacitly assumed so 

earlier even in our earlier analysis, but here we can very confidently say that this is mu m 

times x, it is the maximum specific growth rate. Now is the second condition, if s is 

approximately equal to K s, then we cannot use the above approximation.  

If 𝑆 ≈ 𝐾𝑆 

You cannot say that you can replace K s plus S with S alone because both are 

comparable. This case is rather uncommon, in the case of a batch bioreactor and can 

happen when some crucial but unusual substrate becomes limiting. Otherwise, the 

culture would have reached stationary phase when this actually happens. That is you in 

the batch you typically make sure that you have enough substrate, but there are situations 

when this can arise and this also has great relevance in the continuous bioreactor 

analysis.  

So, let us start looking at it here, where it has some application and then picking it up for 

the continuous case becomes a little easier also. We have two quantities here x and s that 



vary with time in the differential equation and of course, you know that it is preferable to 

have only one dependent variable, either x or s not both, that becomes difficult here. So, 

if you can convert one in terms of the other s in terms of x preferably because we are 

looking at x, we have x all over, if we can express s in terms of x then, we can solve this 

equation. How do we do that? Some thoughts on that, something related to some 

concepts that we have seen earlier in the course in module 2. 
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Yes, we could use what we called, what we defined as a yield coefficient in the earlier 

lecture or in the earlier module, that relates the cell concentration and the substrate 

concentration. 

We know that Y x/ s, yield of cells with respect to substrate is nothing but the amount of 

cells produced by the amount of substrate consumed, in terms of the values that we have 

defined here. x minus x naught is the amount of cells, the concentration of cells produced 

by the concentration of the substrate consumed.  

𝑌𝑥
𝑆

 =   
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
=  

(𝑥 −  𝑥0)

(𝑆0 − 𝑆)
 



And the concentration is amount by unit volume, since we are dividing one by the other 

and the volume happens to be the same, you can cancel out the volumes. So, the amount 

of cells produced by the amount of substrate consumed can be replaced on both the 

numerator and the denominator by the concentrations and we would have the same yield 

coefficient. That is what we have done here. And the assumption that Y x/s is a constant 

is a good assumption under many different conditions. 

If that is the case, we can use the yield coefficient to write s in terms of x, S0 is a 

constant, S0 is the total substrate concentration that is usually known. Similarly, x0 is the 

initial cell concentration assuming there’s not much of a change in the lag phase that is 

also known. So, we are actually interested in the variables x and relating the variable s 

and x. So, s equals:  

𝑆 =  𝑆0 −  (
(𝑥 −  𝑥0)

𝑌𝑥/𝑆
) 

Therefore, after substituting for S, the differential equation becomes  

𝑑𝑥

𝑑𝑡
 = (

𝜇𝑚 [𝑆0 −  (
(𝑥 −  𝑥0)

𝑌𝑥/𝑆
)]

𝐾𝑆 + [𝑆0 −  (
(𝑥 −  𝑥0)

𝑌𝑥/𝑆
)]

)  𝑥 
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The step-by-step solution will take a very long time to show. Especially in the context of 

this course this is a total of 10 hours, this is probably going to take 45 minutes to show, 

all the algebra. So, if you are interested and comfortable in mathematics, I would suggest 

that you work it out, when you have about a half an hour or so. If you are good in math, 

it would not take more than that. You might also need a table of integrals for the part of 

the solution you do not want go and derive the well-known results. So, you need to use 

some well-known results also from the table of integrals. Here, I am just going to present 

the final solution we need to take it on face value.  

If you are doubtful you go head and solve it and convince yourself, that it is indeed the 

solution. The total time for the start of the batch from the start of the batch to reach a 

certain cell concentration x is given as:  

t =   
1

𝜇𝑚
 {𝛼 ln (

𝑥

𝑥0
)  −  𝛽 ln (

𝑌𝑥/𝑆𝑆0 +  𝑥0 − 𝑥

𝑌𝑥/𝑆𝑆0
)} +  𝑡0 

where  

𝛼 =
𝐾𝑆𝑌𝑥

𝑆
 + 𝑌𝑥

𝑆
𝑆0 +  𝑥0

𝑌𝑥
𝑆

𝑆0 + 𝑥0
 



𝛽 =
𝐾𝑆𝑌𝑥/𝑆 

𝑌𝑥/𝑆𝑆0 + 𝑥0
 

 It will take quite a bit of algebra to show this, if you are good at math, interested please 

go ahead and show it to a convince yourself, that it is the indeed the case. I think it is a 

good time to stop here for this lecture. When we meet next, I will solve the problem that 

has been assigned. But please make all attempts to solve it, you need to pickup the skills 

of close ended problem solving at least. And if you follow the method some time soon, 

you would be able to solve complex problems.  

 


