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Lecture - 39
Regression Analysis

Hello and welcome to the course on Biostatistics and Design of Experiments. Today, we
will continue on the topic of regression analysis. | introduced what is the regression
analysis in the previous class. Once you have collected sufficient data, you would have
changed many input parameters, or factors, or variables, or axis, or independent variables
as they are called, like temperature, or pH, or oxygen, or agitation, and then, you are
measuring your output like biomass, or product yield. You would like to fit a
mathematical relation, and that is what is called regression analysis. You can fit 1
parameter as the independent, fitting the observed data, that is dependent, or you can

have 2, 2 independent variables, or 3 and so on, actually.
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Visualization of correlation

So, initially, if you look at how they seem to be related, or correlated as we call it, if |
plot X, that is the independent variable here, and | plot the dependent variable on the y

axis, and if the data appears like this, then obviously, they are not correlated.



So, when we calculate something called a correlation coefficient, it will become almost
0. As it improves, you know, when you have a good correlation, for example, as you can
see, as X increases, y also increases. In such situation, (Refer Time: 1:44) we will have a
correlation coefficient tending towards 1. It is, X increases, y also increases. You can,
analogous to that, you can have a negative 1 also; that means, as x increases, y decreases.
So, this type of figures, in, indicate that the correlation between x and y are extremely
good, whereas, this type of figure indicates that the correlation between x and y are
extremely poor. So, between 0 and 1, the correlation coefficient values will lie, and
pictorially, you can immediately find out if there is, there is a relation. Of course, this is
valid, only if you have 1 independent variable at a time, you can plot, actually; 1
independent variable at a time, we can plot and get a pictorial visualization. And, there
are certain mathematical relationship, one is called the covariance; other is called the
correlation coefficient, which mathematically tells you how strong is the relation

between the x and the y.
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Covartance & a measure of the strength of the correlation between two of more
sets of random variables
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The first one is called covariance. It is a measure of the strength of the correlation
between 2 or more set of random variables. So, if we have x and y, | want to see what is

the covariance. Then, we do a summation of i =1 ton,
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And, you sum it up to all the n data points. Now, a correlation coefficient, correlation

coefficient, sometimes, it is called Pearson's correlation coefficient and so on, is nothing
but

cov(X,Y)

OyOy

Correlation = p =

Variance'forthey So, they are both related.

So, correlation is the scaled version of covariance; because, you will, you can have,
covariance can be a bigger number, whereas, when you do this, correlation will always
lie between 0 to 1. So, it is very convenient. Otherwise, you can have very large number;
as you can see,

. )—() (Y,-— 17)

N



, We can have number practically huge; but once you divide it by this, you are sort of
making it lie between 0 and 1 only. So, generally, correlation is what is looked at and as |
showed, showed in this picture, we can see the correlation coefficient is varying between
0 to, right up to 1, between the x and the y. Now, so, this correlation coefficient as | said,

is also called Pearson’s correlation coefficient.
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is called Pearsons correlation coefficient

EXCEL: poarson{aray! array2)
Square of correlation coafMcient: RSQ(amay! aray2)
correlarray! array?)

So, it is nothing but covariance of x y is this, you know. And, that is also represented as S
Xy; S Xy means

n

z (Xi = )_()(Yi = 7)

i=1

; X IS the averages of x; Y IS averages of y| Now, as | said, this is the standard deviation

for x, standard deviation for y. So, this is nothing but

Noulw



-; S I means, instead of a y, you put all l Why y means, instead of x, you put all

y. So, this is nothing but

standard deviation, and then, there will be, ok... This is called the Pearson’s correlation

coefficient.

So, excel also has the function called PEarSOGR'RSQ. There is square of the correlation
coefficient or correl, that gives you array 1 and array 2; if you give the array 1 and array
2, it will calculate the correlation coefficient. So, all of them have a, this type of
functions. For example, if you look at excel... So, | put in some numbers here; 1, 2, 3, 4,
5, and | get some y values; just randomly putting it. So, we can say, what is a correlation
coefficient between these; correl it is called; this comma this, sorry, equal to this, comma
this. So, the correlation coefficient is 0.95; that means, it is a good correlation, almost
tending towards 1, like in this graph, you know, it is very high. So, even when you plot
them also, you will able to see them. | hope you all know how to do plotting in excel.
We can use a scatter plot. So, you can see this, right. So, data, as X increases, y
increases; it is like a straight line. So, this number gives you the whole thing and then, r s
g, RSQ square of the Pearson correlation coefficient; that is, square of 0.95; square of
0.95; that is, 0.95 into 0.95; that gives you 0.91. This is called R square. Generally, we
use this as, when you are fitting data, use this. This, the top one, correl we use when we
are trying to just see the correlation coefficient. So, both are interrelated with each other.
So, this is called the Pearson’s correlation coefficient.
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Regression Models
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Excel also has these things. Type of regression models; like I said, we can have any type
of regression models. If you know the physics, you can have, say some sort of an
exponential decay, drug release from a, from a drug carrier may follow exponential

decay model, Siné waves, we can have cos and sine; or you can fit this type of binomial

relationship simple regression
yx = bO + blx
y =by +bx +b,X,

, or you can have single parameter cubic x %, x  like this, or you can have 2 parameters x
1 X2, then X1 x 2, X 1 square; or, you can have large number of parameters. So, different

types of models are possible and finally, the idea is to get all these constants, these bs are

all called constants, actually.
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Data fit
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So, what you are doing is, you are trying to reduce, minimize the sum of squares of the
error. What is sum of squares of the error? The data measured and what the model
predicts. So, model predicts, suppose | write this as a model, for any given value x, it
will predict a y. So, that is the model predict; this is the measured value; take a square,
and if you summation, that is called a error, and you want to minimize the error. So, this

is like an optimization problem, where you are trying to minimize

2

SSE = i(ymeas,i ~ Voot

i=1

the sum of squares of this error. This is called the error, because this is y measured, this
is y model, and the difference squared summation is called either error or residual; these

are the two names for that, actually.
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So, if you have x and y, you are trying to fit a straight line,
y=a*X+b

, and that means, you are trying to find a and b, so that,

iZ::[yi_(aXﬁb)]z

i is equal to 1 to 10, is minimized. So, this is basically, it is almost like a optimization
problem; that is what you are doing actually. You calculate a and b, so that, this is equal
to 0. Now, excel has 2 commands; one is called slope; other is called intercept. This is
the slope. This is the intercept. To find out the slope and intercept, for the x and y data,
suppose so, let us take the same data; | have a x and have the y. So, if | want to calculate
slope, so, | just say, slope. This is the x data, and this is the y data. So, this is the slope of
this line; and if you want to get the intercept, so, this is the x data; this is the y data; that
is the intercept. So, it is having an negative sort of intercept, because it goes right down,

sorry, intercept ¢ 2, ¢ 2, slope and intercept.



So, we can also fit it using add a trend line command, and, we can calculate display
equation R square and close. So, it gives you slope and intercept. So, | have made a
mistake here, I think. So, the slope command, through the given data set. So, | have to
give the y’s first, that is the mistake | made. | have to give the y s first; | have to give the
X’s later. That gives you 2.4, intercept. Please remember, | have to give the y first, and
the x later. So, 17.6. So, this is the slope; this is the intercept. So, this is the slope, and
this is the intercept. So, we can use the excel command slope and intercept to calculate,
you can use the slope and intercept to calculate the slope and intercept of a data point.
So, do not forget, you need to give the y’s first, and then the x; whereas, for the
correlation it does not matter, whether you give the x first or y later. But interestingly, |
do not know why we want the y’s first, and then the X's later. So, if it is a linear
regression, that means, if you are trying to fit a linear data, it is very simple; we can use
slope command, or intercept command, or even | showed you with the graphics, we can
just draw a graph and then, we can say, draw trend line, and find our equation. So, excel
can very well do. Of course, there are many softwares, hundreds of softwares,
commercial softwares on payment basis, which can do all these fancy things, actually; it

is not a big deal.
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So, you have to give slope, the y first, then the x later; intercept also, we give that.
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Least Squares Curve Fit
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So, if it is a least, if it is a second order, like a
Y=aXl+bX+c
so then, you are minimizing

izjl:[yi_(axinbeﬁC)]z

. | think you can do that also in excel. We can once draw this, but, we cannot calculate it
as slope and intercept, but we can draw it, and we can try to fit a second order or higher

order type of a polynomial in excel also. So, what are the steps in regression?
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Steps in Regression

Which two-factor interactions (X, * X) thould be intluded?
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We have to specify what should be the regression model, linear or quadratic, perform the
regression analysis and then, compute the statistics. There are many statistics R2%ana
R%1» R%red, We will come to that, and compare predicted value with the actual value; for
example, like | said, it gives you an idea about the error. What is error? Summation of y
calculated by y actual square. So, error should be minimum. So, it gives you an idea
about that. And, if the fit is not good, we can transform it. We can take logarithm of the
data; especially, if you look at drug discovery, normally, the concentrations you are using
is in millimole or micromole, and the response could be some activity. So, normally, they
take a logarithm of the concentration, because, millimole or micromole may be very

small number.

So, when you take logarithm, you can bring it down to 1, 2, 3, 4, that sort of thing. So,
most of the drug response curves will have logarithm, for the drug concentration. Then,
identify which terms are important. Suppose, if you are fitting a multi linear relationship,
suppose, you are fitting a multi linear relationship, some terms may be very important,
some terms may not be important. So, you can identify which are very important, and
you can also plan whether there are any insignificant terms which can be omitted. There
could be some terms which may have very very small absolute value, then, you can

remove that, and then, again redo the regression model until you get a good regression



model. Good means, the error should be minimal. This statistic should be quite high. All
these generally vary between 0 to 1. So, higher the number, better is supposed to be your
fit.
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So, in matrix term, this is what it is all about. Let us not go too much into that.
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Computing the Regression Coefficients
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So, if you want, if you are trying to calculate the a and b, that is, suppose, the slope and

the intercept, if you look at it from calculus point of view, we are integrating with respect

to, say b, or integrating with respect to a, and then, you are equating it to 0. So, when you

do that, we will get an equation for b; and for a, it is very simple, because @£ Xb =Y. So,

it is very simple.
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The Regression Coelfick
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Suppose that we have 4 factees: X3, X2, X3, and X4

and that we want a quadratic fit. We measure the response value at 15 points

The regression equation has 15 uninown
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We'll get a perfect fit, with &7 = 100%



X4, and then, like that, if we, and then, you do that X1 * X2 * X3 * X4 % what will

happen is, you will have 1 for constant, 4 for the X1 X2 X3, the main effect, 6 for the,
the 2 level interactions, and then, 4 constants for the quadratic; these all adds up to 15. 1
plus 4, 5, 6, for 15. And, you have got only 15 data points. So, there are no error, degrees
of freedom at all; it will become 0. So, if you try to fit that sort of data, then of course,
you will get very good fit, because that is no degree of freedom at all. So, you better be
watching out. You need to have enough degree of freedom for the error; do not forget
that. So, depending upon how many constants we have, and the dependants, so, subtract
that from the total data points you have, and check whether the degrees of freedom is
reasonably good; otherwise, your fit, you cannot rely on the fit. You may end up having

100 % fit, but in fact, the error does not have a degree of freedom.

(Refer Slide Time: 18:02)

Goodness of Fit
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So, there are many terms such as R square, R square adjusted, R square predicted, which
give you an idea about the quality of the fit between the x and y. The first one is called R

square. And, this is equal to



. This is equal to 1 -, what is the sum of squares of the error, | told you, the, this is the

predicted; this is the actual; this is the predicted, actual. So, this is the error, squaring up

summation and the denominator has the variance for y, (Ji=y.bar) %y bar is the'mean of

Vo Thistis'called’R™>. This is like a, this is as predicted by the model; this is the total
variance; this is the total variance, as predicted by the model.

So, if it becomes 1, that means, the entire variance can be predicted by the model. So,

closer to 1, that means, large proportion of it could be predicted by the model; you

understand. So, 1 -sum of squares of the error, that is given by y predicted, sorry, y

YABan 2 Tand I minLs of that, actually. So generally, it will lie between 0 and 1; closer to
1, it means, the fit is extremely good; closer to 0, that means, it is very poor.

(Refer Slide Time: 19:41)

Degrees of Freedom

¥ Degrees of Freedom = ¥ Model Parameters - 1

The number of points should be at least ~25% mare than the number of
degrees of freedom in the regression model

So, the degrees of freedom is number of parameters minus 1, as | mentioned sometime
back also. So, you need to have, you cannot have parameters equal to the number of

experiments, or the number of experiments just matching with the parameters; in that



case, you will, you will not have any degrees of freedom. So, if | am going to fit a linear
relation like yy=ax + b, you have 2 parameters; if you do only 2 experiments, that is not
good; because your d f will be 0. So, you should have done at least, minimum 3
experiments; do not forget that. So, but then, there is a rule of thumb; number of point
should be at least 25 % more than the number of degrees of freedom. So, if you take y=
ax + b, | have 2 parameters, and so, number of points should be at least 25 % more than
number of the degrees of freedom in the regression model. So, | have 2. So, | should,
even if 1 do one, at least 3 or 4, then its good actually.

(Refer Slide Time: 20:45)

Adjusted R Statistic
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This is 1 minus sum of squares of the error multiplied by n minus 1, / sum of squares,
total sum of squares multiplied by n minus p; n is the number of points, data points, and
p is the number of terms in the regression model. So, if you have y = ax plus b, p will be
2; if you have y = ax 2 + bx + c, then, p = 3. So, this can be rearranged also; 1-n-1/n -
p, 1 - R 2 So, this model tells you something interesting, because you can always add

terms and try to improve your R 2. But then, if you calculate R ?, if you add more terms,



p will become large. So, this will become small. So, this whole term becomes large. So, 1
- this whole term will become small. So, Rzadj will keep going down, although R? will go
up. So, p is an indication of, whether you are doing an over fitting of your data. So, R?
gives you an first level of a data fitting, but, R? adj takes care of the number of parameters
you have in your model; so, it adjusts for that here. So, that is a better indication than R%;
and if | keep increasing p, we will always keep increasing your fit, but then, r, R*will
increase, but Rzad,- will decrease, because of p being here; that is called adjusted R?
statistics.

(Refer Slide Time: 22:33)

Predicted R Statistic .
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There is something called predictedlR*ISEINthiSIpredicted RS an indication of the
predictive capability of your model. Ultimately, I told you long time back, once | have a
model, | can use it for predicting, at different conditions. For example, if I have a model,
yield of the bio, of the metabolite as a function of pH and temperature, a plus b p H plus
c temperature, 1 do lot of experiments, and then, | get the model fora b c. Now, | can use
this model to predict what will be my yield of the metabolite at different pH values and
different temperature. So, ultimately, I am going to use this model for predicting. So, this
R2predicted gives you an indication of how good the model is able to predict; whereas
the remaining, , previous RIEWO'R? R%and R?adjusted, are talking about how good the fit

is, whereas the R square predicted tells you how good the predictive capability of the



model. So, how do you do this? What you do is, suppose, you have 10 points, what you
do is, you remove 1 point, and fit your model, fit your relationship, Say/y/ =X+ b, to, to
the 9 points. And then, using that, you try to predict for the 10" point. So, of course, the
prediction will not be exact. So, there will be some difference; you square it, that we call
it error. Then, you put that point back, you remove another point, and then, with the new
set of 9 points, you fit a, fit an equation, and then, try to predict the § value for the data
point which was missed out. Again, you will get some error; you square it. So, you keep
on doing that for each of the 10 points, and then, you square those errors, add up, that is
called the sum of squares of the predicted; understand; that is called the sum of squares

of the predicted. So, R square predicted

. What is this? This is summation of Jlil=ybar?. Do you understand how it is done?
So, if you have 10 data points, what you do is, you remove the 10th point, and then, fit
an equation for the 9 points, try to predict the y for the 10th point using the equation you
have developed. Now, of course, it will not be exact; there will be some difference; that
is, error is there. You square it up. Now, you put the 10 th point back; remove the 9th
point, and then, fit in equation for the remaining 9 points, and try to predict the y value
for the 9th point. Again, you will get some error; square it up. Like that, you keep on
removing 1 point at a time. Of course, you put the other points back;, then you find out,

try to predict the y at that point using the model. And then, error, you square it up; you

add all these errors; sum of square of the error, that is called the sum of squares of the

_; you will get the Rjred. This is very stringent l It gives you a better

understanding of the predictive capability of the model.

So, if you fit a data and generally, R®will be high; R%adjusted will be lower and
.predicted will be still lower. So ideally, if I am fitting a model, I expect all these 3 R
squares to be above 0.6. You know, that is a reasonable model, especially with the
experimental system. If you might, you will never get 0.9, or so on, for experimental
data study. So, R% will always be high, and R¥adjusted will be lower, and R¥predicted will



be still lower. And ideally, all these 3R square should be above 0.6. Then, you can be
reasonably sure that, your model is reasonably good. So, these are the statistics, statistics
which we need to keep in mind to understand the predictive capability of the model, the
fitting of the data and effect of parameters on the fitting of the data, ok.

(Refer Slide Time: 26:54)
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Once you do the fitting, you look at the residuals. That is, residual is nothing, but the
difference between the predicted and the actual. Generally, these residual should be
random; that means, if there are 10 residuals, some of them should be plus; some of them
should be minus; it will not be all pluses, all minus. Then, you should be, you are very
sure that there is a mistake; | mean, there is some catch, problem in your fitting. So
generally, it should be normally distributed. So, we can even do a test for normality to
see. It should not be biased in all pluses all minuses. And also, pattern; you should not
get residuals like this; you know, it should generally be like this; you know, almost, some
of them small positives, some of them small and negative. And also, you should not
have unexplained outliers; suddenly, one of the data, one of the residual is very high.
Suppose, you have ten data points, you are fitting it, you are calculating the residuals. So,
nine residuals are reasonably small, small, small, some of them positive, ant then, one of
them is extremely high. Then obviously, there is some problem. We need to really look

at it, look at that data point. It is called unexplained outliers.
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Validation

The resulting R*,, and RY,, ., can be as high as 100%

the measures of goodness of fit are valid only for the regression data ponts

Then, of course, once you have done the model fitting, you need to validate; you need to
see, whether it is able to predict for some new axes; that is very very important. Unless
you do that, you are not sure your model is good, because, you may be, suppose, you
have 3 points. You fit x and y; you think it is a straight line,. But in reality, it could be
like this. So, you do not know, although you think by looking at these 3 points, they all
fall in a nice line. So, you fit a line like y=aX +b, straight line; but in reality, it may be
going up like this, and coming down like this, right. So, you have to be very careful on
that actually. So, we need to have a validation. Do not forget that, we need to have a
validation. That is one point. Another point is, we cannot extrapolate, because, that fit
you do is based on the experimental data and you cannot extrapolate from this fit, at
some other point which is wrong, because, you are not sure how this graph will change.
In some region, it could be linear; you may think it is a linear relation, but actually, the
graph may be going up; especially if you look at the biomass, exponential growth phase,
all those things happen, right; stationary phase. So, whatever region in which you have
collected data and fitted, you have to be sure, you have to use the model only in that

range; be sure about it; be careful.
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Then, there is something called leverage. This is very important. | need to talk, mention
about it. Suppose, you have collected data and suppose, this is your plot; you have lot of
x data collected around this place. And, there is one x here. Now, you are fitting a line.
What is the danger of this? This particular point is leveraging the entire line, slope of the
entire line. Suppose, if the, if | have made a mistake in this data collection, the slope will
change because of this; whereas, even if you make some mistakes here, on these points,
there will not be much change, because you have many points; whereas, you have only
one points. So, this point leverages your entire slope of this line. So, such an experiment
is extremely bad. You should have done at least 2 experiments, so, even if one of them is
partially wrong, you are going to take a mean, so, the slope will not change too much.
So, the leverage here is only 0.5. You have 2 points, leverage is 0.5. A leverage of 1
implies that, any error in collecting data of this point is going to change the slope;
exactly; whereas, if you have 2 points, and any error, we will get only half. If you have
many points, 3 or 4, then obviously, it will keep going down 1 by 3, 1 by 4. So, that is
very important. So, when you collect data, it should be well spread out, and you should

not have points which have a very high leverage like this, watch out.
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Changes to Get o Better Fit
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So, how do you change the model to get a better fit? Use a higher order model. You can
drop superfluous terms. So, if you have JElaBXREX2 a8 %2]° and so on, so,
you can look at some of those a, b, c, d, e and if some of them are very, very small, you
can drop them out. You can use transforms, like I said, in drug discovery, concentrations
are always in micromole which is small, 0.0001 mole and so on. So, you can take a
logarithm of that. Sometimes, you can take 1 by that, especially, again in drug discovery,
we use 1 by. So, transformation. We can use, use even non dimensional combinations. If
you are an engineer, you will know things like Reynolds number. You can even take
aspect ratio, length by width, that sort of non dimensional combination that will improve

your model fit.
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Common Problems

Reverse Causation

Shorks are observed nea the home of new bom babves

Nne usualy beags 2 peak in the sumber of both weddings and sukides. Which iy

vations / Selective Memary

10 Mel” Horgetting 8% of the observations where Estening dd occur

So, some of the common problems that one comes across, reverse causation; this is a
very interesting problem. So, in Europe and England, they used to see lot of storks.
These are birds, migratory birds observed near the home of new born babies. So, did
these storks bring the new born babies? June usually brings a peak in the number of both
weddings and suicides. Especially, in the western countries, weddings are held during
summer time. So, again, suicides are also very high. So, which is the cause? Selective
observation, selective memory. My spouse never listens to me, forgetting that 98 % of
the observations were listening did occur. Even if the spouse had been listening to 98 %
of the time, the 2 % of the time when the spouse does not listen is what hits the person,

and that gets embedded in the thought process.

So, the person may make a statement, my spouse never listens to me, but that could be
only 2 % of the time. The remaining 98 % of the time, the spouse may be limit,
listening. Omitted factors. There could be some other x s, you know; | may think
temperature and pH and carbon is important. There could be a magnesium, or some
other micro nutrient which may be helping the growth of the organism which is called
omitted factors. Multi-collinearity. 2 or more X's are confounded. Sometimes, X°§ may
get confounded. Suppose, | am looking at weight, height, as independent variable, and |

am measuring the, the blood glucose level, but then, weight and height may be



confounded. Taller people may be more heavier than shorter people, because height also

has some weight involved in it.

So, those 2 k'8 are confounded. So, unless you adjust for that, then, that could be
multicollinearity. For example, the blood pleasure increasing with, say lipid content, but
then, even age, increase in age, also may increase the blood pleasure. So, there could be a
confounding between the age and the lipid content. So, you need to remove the effect of
age, so that, if you want to study only the lipid content, then, that is correct. Otherwise,
it is getting confounded. So, the multicollinearity is another problem. So, these are

common problems you have to keep in mind, when you are doing a regression fit.
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Example
Yzb «b. x
(S dma poims)

Factor 139 of Ms Heal) ftable)
Regression 121 1 121 0l
Resdual 3267 3 108.9

Tota 388

Residualss & L (Y, Youdt
Totalss = L{Y, Y}

Regrossicn s = L{Y-Y,_ )

So, if you are, suppose, you are fitting like this, Y=b, + b; X

. So, the, you have the, there is a residual, that is your sum of squares of the error.
Suppose, | have 5 data points, and | have 2 constants. So, the regression will have 1
degree of freedom; 5 data points, so, 4 degrees of freedom and the residual will have 3

degrees of freedom. So, sorry, 4, 3, 1. So, the total sum of squares, as | said,



; residual sum of squares = y predicted minus y actual square. So, from this difference,

we can calculate, we can calculate the regression sum of squares.
i - 2
Residual ss = X (Ygata-Yimodel)

. Total sum of squares is

2
Total ss=X (Y, -Y)

. So then, we can calculate the mean sum of squares by dividing, as you know, the
degrees of freedom. Then, we can calculate f value, regression divided by residual. And
then, from the f value and f table, we can say, whether the, what is the significance,
whether we can calculate p. The h naught, the h naught is, there is no relationship; h

naught, h 1, h a is, there is a relationship.

So, if you get p, sorry, if you get f table value lesser than the f calculated value,
obviously, we can say, there is a relationship. This is what you do. So this is, there is an
ANOVA which is created when you do a regression analysis. There is an ANOVA which
is created when you do an regression analysis, and there are 3 sum of squares; one is

called the regression sum of squares,

Regressionss=X (Y-Y )

which is equal to y, y minus y model, that is a residual sum of squares, which is y data -
y model prediction; total sum of squares is y data - y bar square; y bar, bar is nothing but
average of y. And then, you have degrees of freedom. So, total degrees of freedom will
be total data points minus 1 and the regression degrees of freedom, if you have y is equal
to linear fit, regression will have one degree of freedom. So, the remaining will go to the

residual. And then, you calculate f calculated by dividing the regression by the residual,



and then, see whether this number is larger than the f table value; if it is larger, then, we
can say, there is a, the regression relationship is valid; otherwise, we can, we will say that
regression relationship is not significant. This is how you do the regression analysis on
the corresponding ANOVA table.
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Regression Line

y=a+xp

Now, suppose, this is a regression relationship,

y=a+xp

; o IS the constant term and 3 1s your slope. So, B is given by

p=

XX



. Then, the alpha is given by

S}

Il

<

|
m| wn
R

x|

. S0, this is how we calculate both the gecand 8. Of course, | showed you in that excel, for
slope, you give, give s | o p e and intercept, we giveinterce pt. So, the slope is

nothing but S xy divided by S xx and the intercept is nothing, but this. This is how the

software also calculates. Of course, et and B then will have a region of confidence,

because it is not single.
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(1 - )100% Confidence Limits for slope J:

ptt, S

/}iluzﬁ

t,; critical value for the t-distribution withn - 2
degrees of freedom

So, confidence limits for the slope, this is your slope, sorry, this is your slope; S Xy by S

XX. So, it has got a confidence limit,
IBita/ZS[J

S

Bxt,, F

with n minus 2 degrees of freedom; S XX, you know; S is the standard deviation given
like this, Ssquare=1/n-2, S - S XY 2/ S xx; understand. So, you understand this,
this parameter S is given like this; S XX is summation of x - x bar 2, that is what it is.
This is for S % and this is t o, 95 % if you can put, with n - 2 degrees of freedom.
Similarly, the intercept also will have a confidence limit that is given by this type of
relationship. The intercept Calculated #or =tz /2's'square root of /0 + X bar 2 by S XX
with n - 2 degrees of freedom. So, slope and intercept, because, after all the slope and
intercept is single value which we have calculated, but then, as we have been doing, we
should, it is like an x bar, you know. You remember, we used to always give a

confidence region limit.
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(1 - )100% Confidence Limits for a point on
the regression line :

C; g IB'\.(I i [(1 :S

t ., critical value for the t-distribution with n - 2
degrees of freedom

The confidence limit for a point on the regression line, so, if | fit a regression line, so at

any point X, , it will give as

. A 1 (%, —x)
0{+,onita,28 E"‘%

d+ﬁx0, that means, it is predicting the y naught at a given x naught, this is your

regression line. This also will have a confidence, because it will not be absolute; that is

given by

n minus 2 degrees of freedom, t distribution. So, if I am predicting a y naught at a value
of x naught, so, it is not just the slope, sorry, the slope and the intercept alone, there is a
plus or minus term coming in here, because, there is always a confidence limit; do you
understand? 95 % confidence limit is associated with this, and that is given by this. So,

you need to consider all these confidence limits for this slope, confidence limits for the



intercept, as well as confidence limit for a point on the regression line as well. So, we
have completed the regression which is a very important topic. Once you have a data,
you need to fit the data to a linear or a non-linear model with the X’ as your factors, or
independent variables and y is your dependent variable. We will continue further in a

new topic in the next class.

Thank you very much.



