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Welcome to the course on Biostatistics and Design of Experiments. We completed what 

do we want to talk about in screening designs and we started on the second order 

designs. Second order designs are generally done after you screen all the unwanted 

factors and come down to a limited number of factors. Second order designs are 

quadratic in nature. So, we can develop regression models which has second order terms, 

which has a square terms, and so on, actually. The first one we looked at is called the 

Central Composite Design. 
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So, in the Central Composite Design, I mentioned, suppose you take a 2 power 3 type of 

a design, that means, 3 factors, 2, 2 levels, 2
3
 design. So, what you have, you have a 

cube, 2
3 

is 8 experiments, 2 * 2 * 2. So, this could be factor 1; this could be factor 2; this 

could be factor 3.  So, we have 8 experiments. Then, we add one extra experiment in the 

center. Then, we also add 6 experiments away from the face of the cube. This is the face 

of the cube; so, away from it.  So, you have 6 faces for a cube; so, you have 6 



experiments. So, this adds up to 8 + 1, 9, + 6, that gives you 15 experiments.  And, by 

doing 15 experiments, you are changing each of the factor 5 levels. This is better than a 

3
3
 type of a design, a full factorial design, 3 levels and 3 factors, that will be 3 * 3 * 3 is 

27, whereas with 15 experiments, I am able to change each of the factor 5 levels; 

whereas a 3
3
design will change each of the factor only 3 levels. So, that way this is 

extremely powerful.  

Then, we have these Box-Behnken Design. This is also similar to that; only thing is, 

instead of the corner points it takes the points at the edges of the cube, at the edges of the 

cube, ok; that is the only difference. 
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So, it does not have the corners; it takes the edges of the cube. 
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So, let us go back.  So, suppose if you have a 2 by 2 system, that is 2 
2
, 2 factors only, 

you have 4 experiments at the corners as the factorial points; then, one experiment in the 

center, and then, you pickup 4 experiments outside this square. This, we call it α, α >1.  

If α =1, it will be lying exactly over the edges. Then, that is like your + 1, 0, -1 type of 

experiment. Whereas, in the α case, what we are doing is, we are having +1, 0, - 1; in 

addition, we have + α and - α, for each of the parameters. Do you understand? Now the 

question is, how do I decide on the alpha? 
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So, it has been found that, alpha, square root of the number of parameters is way, is most 

optimum; that means, if it is a 2, 2 
2
, then, α should be 1.414. So, if your square has side 

of 1, then, alpha should be 1.414; that will be a point. So, the experiments here is + 1, 0, - 

1, + 1.414, - 1.414, for each of the parameters; that is how it look, or α you call it. So, as 

I say, as I said, generally, it has been found, square root of number of parameters gives 

you the best optimum results. So, if it is a 3 parameter problem, you will do square root 

of 3; that is 1.732; if it is a 6 dimension, square root of 6, that is 2.44. So, this is a good 

number to have for α. 
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So, if you compare it with your 3k factorial design... So, for a 2 factor, 3 level, 3 
2
, 3 * 3 

is 9, CCD also gives, will give you 9, that is for 2 factorial; 1, 2, 3, 4, 5, 6, 7, 8, 9, right. 

So, the number of experiments is the same, but like last time, I told you, if I am doing a 

factorial, 2 raised to the power 3, I am looking at each factor only at 3 levels, right. 

Whereas, when I use a CCD, I am looking at each factor at 5 levels.  So, I will get better 

non linear relationship.  

Now, let us go to 3 factor problem; 3 levels, 3 
3
, 3 

3
 is 3 * 3 * 3; that will come out to be 

27 experiments; whereas, with CCD, with CCD, I can do 15 experiments; one, this is the 

2 
3
, 8 experiment, then center, and then, 6 star points, 15 experiments.  You see, I have 

reduced the experiments dramatically. Now, go to 4; 3 
4
, 81 experiments; CCD, I just do 

25 experiments. 5 factors, 3 
3
, 243 experiments, whereas, I get 43 experiments in CCD. 



So, number of experiments goes down dramatically.  It has got lower variance, because I 

am looking at different levels of each of these factors. Of course, I can go to fractional 

factorial of this, we will look at a number of experiments also as we go along, when we 

do a fraction factorial of 3k. 
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The Box-Behnken Design for 3 factors is given like this.  So, it is at 3 levels.  So, we 

have a -, 0 and +. So, as you can see here, we have a minus, minus 0, minus plus 0 and so 

on. So, there are 15 experiments in this particular set. Basically, what you are doing is, 

you are doing experiments at these places, these 4 corners, plus, you have a central run.  

We are doing 3 central runs, and then, we are also doing experiments at these faces.  So, 

there will be 6 faces, actually. So, 8 corners, 6 faces, and then, we are doing at the center. 

It can be represented in this short form, A as plus or minus, B as plus or minus and C in 

0. That will make up 4 experiments, because A at +, and then A at -, B at +, and B at -. 

Then, we do A + or -, C + or -, and B will be in 0; that means, A + or -, C + or -; so, that 

is again, 4 experiments. Then, A will be in 0, and B and C plus or -, + or -; that will be 4 

experiments, and 3 experiments at the central point.  So, they all add up to 15. This is 

called a Shorthand Notation.  This is the normal for which we are used to. So, when we 

talk about, say + or -, + or -, + or -, for A and B, and C as 0, this is exactly this. The first 

4 experiments are A going both + or -, B going both + or -, and C going 0, and the 5th 



experiment is 0, 0, 0; that is, the central point.  So, we have 3 places where we have the 

experiments done at the central point. So, this adds up to 15 experiments. 
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Suppose, we have 4 factors, the Box-Behnken Design, 4 factors namely A, B, C, D, 

again, the same approach.  We have A + or -, B + or -, C and D are maintained at 0; so, 

that adds up to 4 experiments. Then, we have A and B at 0, C and D on + or -, + or -, that 

adds up to 4 experiments.  And then, this is at the center point.  So, that comes to one 

experiment, and then, we do A and D at + or -, B and C at 0; that is 4 experiments.  And 

then, B and C at + or -, and A and D are maintained at 0, that is 4 experiments.  And 

then, one center point, and then, we do A at + or -, C at + or -, that comes to 4 

experiments.  Then, B at + or -, D at + or -, that comes to 4 experiments.  And again, 

another center point, that is one experiment.  So, they all add up to 27. So, this is called 

the shorthand notation and this is the longhand notation. This is the normal, we are used 

to it.  And so, when you are doing a Box-Behnken Design for 4 factors, we have to do 27 

experiments. So, when we are doing a Box-Behnken Design for 3 factors, we do 15 

experiments. 
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So, if you are doing a 5 parameters, that means, A or 5 factors A, B, C, D, E. Then, we 

can develop in the same way, the shorthand notation is given and we end up with 46 

experiments. So, we have A, B + or -, C, D, E are maintained at 0; like that, you keep on 

varying, and then, you also have these center points. So, you do totally 6 experiments for 

center points; so, this comes to 46 experiments. So, you need to do 46 experiments, if 

you want to do the Box-Behnken type of design. 
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Now, let us do the CCD, which is called the Box Wilson design.  The CCD is called the 

Box Wilson design. In CCD, what do you do? You do the factorial, and then, we do the 

center points, and then, we do the star points, or we call it α  points, they call it α point. 

So, if you are doing the factorial could be at 2 
3
, or it could be at 2 

3-1
. 

Let us look at the full factorial.  So, we have the 8 experiments for the factorial. This is 

the first 5, 8 experiments of the factorial.  So, we have all the combinations for A, B, C, 

that is 8, and then, we do; these are the center points.  So, we will be doing 6 experiments 

for the center points. We will… I will tell you why you need to do 6 experiments.  And 

then, we do the star points, or the α points; that means, A at + α and - α, B at + α and - α, 

C at + α and - α; that comes to 20 experiments. Why do you need to do 6 at the center 

point?  There is a formula which is like this, n c, that is number of center points  

 

 

where nF is the number of factorial experiments.  

So, in this particular case, we are doing 8 experiments; that is, 2 
3
 full factorial. So, that 

comes to 8 + 1, 9; square root of 9 is 3; so, 12 - 2, n is the number of factors, number of 

variables or factors; the… So, here we have a 12, and here we have 2 * 3, 6; so, 12 - 6 is 

6; so, we are doing 6 experiments. We can do the same Box Wilson, but instead of 

factorial, we can do a fractional factorial, that means, 2, 3 - 1, that means, we are doing 

only 4 experiments for the factorial region, and then, the remaining is the center points, 

and then, + α, - α, + α, - α, + α, - α. Here, we are doing only 3 center points, because 

according to this formula, 4 square root of, nF here is 4; so, 4 + 1 is 5; square root of 5 is 

2.236; multiply by 4; so, that is about 10; and then, -, the number of n is 3 here; so, you 

will end up with 3 center point.  

So, depending upon the number of runs you are doing in the factorial, the formula is 

given, where you substitute that.  So, if it is a 2 
3
 full factorial, we will put nF as 8; if it is 

a 2 
3-1

, fractional factorial, we will put nF as 4; that will give you an idea about the center 

point. This is how you build up the Box Wilson-CCD, ok.  
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So, we have looked at different types of 3 level designs, which are also called non linear 

designs.  So, we have the 3k - q. This is exactly like your 2n - q type of thing.  It can be 

used for qualitative or quantitative factors. We can use it for linear and quadratic effects.  

You can also estimate linear and quadratic interaction; that means, I can put a A square 

or A * B type of terms in my regression.  So, this can be done, actually.  

Now, we looked at Box-Behnken Design.  So, we can use it for quantitative factors.  Of 

course, we can also use it for linear, quadratic, two-way linear interactions and so on. 

Then, we came to CCD.  The advantage of CCD is, it can look at almost 5 different 

levels, because we are having star, (Refer Time: 14:47) α + and α -, unlike any other, 

other designs we are talking about.  We can estimate linear effects, quadratic effects, 

two-way linear interactions and so on. Then, the full factorial, 3 
k
. So, we are going to 

have a large number experiments here. We can use it for qualitative or quantitative; we 

can use it for linear, quadratic effects; also, all types of interactions, two-way, 2 level 

interactions, 3 level interactions and. so on, actually. This is a full factorial design, ok. 
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So, this is a comparative table; full factorial, if am having k is equal to 3, that means 3 

factors, or 3 variables, 3
3
, 3 * 3 * 3 is 27; and then, if it is 4, sorry, 3 * 3 * 3 * 3, 81; so, it 

grows up exponentially.  If you come to CCD, if you assume a fractional factorial, for 

the central portion, and then, we consider the center points as well as the star points, you 

will have 13 experiments. If you remember this, if you remember this, we have 13 

experiments, right. So, we can have 13, whereas Box-Behnken will give you 15 

experiments. If you have 4 variables, then we can have 27 experiment; that is, we can 

build up one-third factorial type of design; Box-Behnken gives you 27. This tells you 

how many center points, and CCD, fractional factorial for the central portion will give 

you 20 experiments, and there will be 4 center points. Like that, you know.  So, as you 

can see, CCD appears to be very efficient when compared to any of these design - Box-

Behnken, or 3 
k - q

, or full factorial design, actually.  And, also you can see, we can get 

center points; that is very very important. Both these designs give enough number of 

center points which will help you to estimate the errors.  

So, CCD appears to be the best, if you are looking at a quadratic type of model or higher 

order models. So, we looked at a large number of design strategies. We looked at the, the 

screening design strategy; then, we looked at the second order design strategy. Here, we 

have the Box-Behnken; we have the central composite designs; we have the, of course, 

the full factorial 3 level design; then, we have the fractional factorial 3 
k - q

 type of design 

and so on. So, once we have these designs, what do we do? We can perform an ANOVA. 



Once we perform an ANOVA, we will know which factors are important.  We can even 

look at whether any interactions are important. Then, we can go into regression; we can 

develop regression relationships, and then, get a model.  If it is a second order model, 

that means, if it is a quadratic model, we can optimize that model.  By doing an 

optimization, we can find out the best set of parameters at which, say my yield is 

maximum.  Then, I can go and test it out in my actual reactor, bio reactor, or whatever 

system I am looking at to see whether I got the same answer as predicted.  

So, ultimately, you want to optimize, or maximize your productivity, maximize the yield 

of the metabolite, maximize the yield of biomass.  So, obviously, once you perform your 

design calculation, you shortlist the best set of parameters, you identify which 

parameters are going to play a important role, are significant, eliminate the other 

parameters; then, you develop a regression relationship; and with the regression 

relationship, you optimize your product yield; that means, you change the parameter 

values theoretically, using the regression relationship, you change parameter value and 

find out the best set of parameter values, which give you the maximum yield. And then, 

you can go and test it out in your lab, and you can say, this is the best type of conditions 

at which I should operate my bio reactor. So, this is how the sequence of events take 

place, when you start looking at the experimental design strategy. So, that means, I need 

to have a good knowledge about, about my regression. 
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What type of regressions to use, and what type of models I need to use, and so on, 

actually.   

So, let us look at some of those regression approaches by which one goes about doing the 

modeling. So, what is a regression analysis? So, regression methods are used to develop 

simple empirical models. 
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So, we can get y = a + b x 1, + c x 2, where x 1, x 2 are my parameters.  If I have a 

second order model, I can use it for a = b x 1, + c x 1 
2
, + d x 1, x 2 and so on. We can 

get some actual understanding of the physical phenomena.  We can correlate design 

variables. So, we can do so many things with regression models.  And, typical regression 

methods use a simple regression method, multiple regression method, multiple linear 

models, partial models, backward regression and non linear models, second order 

models, and so on, actually. So, regression, we can do so many things with the regression 

models. 
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So, regression can help us to understand which factors are important.  Of course, we can 

do it through it ANOVA also, as I have been talking about it in the past so many classes. 

So, it can… of course, the regression also tells you, depending upon the parameter which 

you get, which ones are good.  We can use it for predictive.  Like I said, I can optimize 

the conditions, and then, I can say, if I operate at this temperature, this pH, this carbon 

amount, I will get maximum yield. How do I do that? I can take the regression model, I 

can modify that, the conditions and see whether I am able to increase the productivity; 

that is called simulation.  And, it is, that is called prediction. So, you come up with the 

new operating points. We can use it for estimating the coefficients, what will be the 

constant that gets multiplied with temperature; what is the constant that gets multiplied 

with pH. The constants also tell you something very very important.  It tells you, what is 

the effect of each of these, what is the quantum of effect, or the weightage of each of 

these parameters on my total yield, for example; if that is what is my desire.  

So, regression has lot of uses.  It not only developing an equation, it can be used for later 

optimization, simulation, model predictions, new scenario generation, looking at which 

factors are important, which factors are not important, whether some factors are 

positively correlated, whether some factors are negatively correlated, and so on, actually. 

So, regression analysis is extremely important, if one wants to do a proper analysis.  



So, what are the approaches, we pick a regression model. So, do I go for a linear 

regression model, do I go for a non-linear regression model, do you have a X 1 
2
, do I 

have X 1 * X 2, that is interactions; X 1  
2
 means it is a quadratic; X 1 and X 2 means it is 

an interaction. 
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So, I need to decide, do I go for a linear model, nonlinear model.  Then, you gather the 

data, of course; you collect enough data.  You know which parameters are important 

after performing a screening design.  Then, you perform the regression analysis.  That 

means, you actually fit your data to the model you have selected, and then, estimate 

those constants, A, B, C, whatever it is, the constants of this regression model. So, you 

need to decide on which model to consider; that is very, very important. So,  a priori  you 

say I will take a linear, multi linear model; that means, a + b X1 1, + c X 2, + d X3, like 

that; that is a multi linear model; or, I will say, I will take a single parameter quadratic 

model, a plus b x 1, plus c x 1 square; or, I will take a 2 parameter model with quadratic 

terms; that means, a + b, X1 + c X2, + d X1 x 2, and e X1 square plus f X1 
2
; like that, you 

know.  So, you need to a priori decide.  But, later on, when you do the regression 

analysis, depending upon your A, B, C, D, you may neglect some of the parameters; if 

the parameter values are very, very small, you may do that.  But, you need to anyway 

consider a priori, what type of model you will do; that is very, very important. Then, you 

perform the regression analysis, and you select the best model for your… based on the r 



square, based on the ANOVA. So, like that, finally you end up with the best regression 

model for your system.  
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So, regression is nothing but a curve fitting for a single parameter; that means, if I am 

measuring flow as a, sorry, I am measuring pressure as function of flow, flow is your 

independent variable; your pressure is a dependent variable. So, if it is a linear model, I 

will have y = A +, that is, pressure is equal to A + B * flow. If it is a second order model, 

I may say pressure = A + B flow + C flow squared. So, when I fit the data, I can estimate 

A, B, C. 

So, in this particular case, I may think, it is not a linear, it is a non-linear. So, I will take 

A + B flow + C flow squared. For a 2 parameter, of course, suppose, I have X here, y 

here, and z is my dependent variable; so, I will have, linear model will be, y = A +B x 1 

+ C x 2; and non-linear model will be y = A + B x 1 + C x 1 
2
 + D x 2 + E x 2 square +, 

F x 1 x 2 also, if you think there is an interaction, and so on, actually. Then, you estimate 

the constants A, B, C, D, E, F; by fitting the data, you determine the error. What is error? 

What is predicted by the model, minus what is actual, square it up, sum it up - that is the 

error sum of squares.  So, from there, you perform an ANOVA, and then you see, 

whether the model is really predicting the data or not. So, that is quite straight forward, 

and that is what you do in your regression analysis. So, basically, it is a curve fitting for a 

single parameter, curve fitting; so, it is easy in a one-dimensional system, that means, 



single parameter, or even a two-dimension system to visualize; but, if it becomes higher 

dimension, we cannot really visualize.  We have to look at the error sum of squares and 

then make a conclusion, whether the error sum of squares is very large for one model.  I 

have another model; I get another error sum of squares. I can compare both of them and 

say, as they are very different, or no, they are not very different.  

But, if I am having a very simple single parameter, or a 2 parameter model, I can even 

visually plot them, and I can say, yes, this model looks good. But, for larger systems, it 

becomes more difficult.  You will not be able to tell, unless you actually calculate the 

error sum of squares. So, that is very, very important.  And, we will go down, as we go 

along to… and I will tell you how to calculate these various parameters, and how to 

estimate the constants of regression, the multiplication factor or the slope of regression 

line, and so on. Excel also has that option, to determine both the slope, as well as the 

intercept for the regression line. 
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So, if we can visualize the data, there are different relationships that are possible.  

Suppose, I take a parameter X here, that is the independent variable, and this is my 

dependent variable Y, I can have different types of relationships; that means Y and X are 

highly correlated. As you can see, as X increases, Y also increases; whereas here, if you 

see this data, as X increases, y is all over the place. So, this is a 0 correlation. This is the 

best correlation. So, in between, you can have different numbers possible; in between, 



you can have different numbers possible, different figures; look at these figures; not at all 

correlated, little correlated, highly correlated. So, you can have correlation coefficient 

varying between 0 to 1, and (Refer Time: 29:09) if it is 1, as X increases, Y also 

increases; if it is - 1, as X increases, Y decreases. So, you can have both the situation.  

(Refer Time: 29:09)) And, the direct correlation, or indirectly related, or positively 

related, negatively related, and this is called the correlation coefficient.  And, I will tell 

you how to estimate the correlation coefficient also.  But, it becomes very easy if you 

have 1 parameter to calculate the correlation coefficient, ok. 
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There is something called a Covariance. Covariance tells you the strength of the 

correlation between 2 or more sets of random variables, X and Y. So, how do you 

calculate? It is given by this formula,  

 

covariance x y, summation of, i is varying from 1 to n, x i minus x bar, x bar is the 

average of all the x s, y i minus y bar, y bar is average of all these y s divided by n minus 



1, is called the covariance.  It tells you the strength of the correlation, and the correlation 

coefficient is given by  

 

 

covariance of X Y / sigma x sigma y; sigma x is, what is sigma x? x i - x bar square, 

divided by n - 1. What is sigma y square? y i - y bar square, ÷n minus 1 summation.  

So, correlation is the scaled version of covariance.  You are scaling it down with respect 

to the sigma; that is standard deviation X, and standard deviation Y. So, as I said, once 

you collect the data, we need to perform a regression analysis, and before the regression 

analysis, we actually look at the correlation coefficient between X and the Y; that means, 

the independent variable and the dependent variable. So, if I have many X s, that means, 

I have temperature, pH, carbon amount, and for each one of them, I have the yield data; 

so, I can perform a correlation analysis. I can calculate the correlation coefficient 

between temperature and the yield, between pH and the yield, between carbon amount 

and yield, to see whether my correlation coefficient value is very high or very low; 

whether they are correlated or not correlated. So, you can do that as your first step to 

analyze your data. So, we will continue on this regression analysis in the next class also. 

Thank you very much. 
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