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Welcome to the course on Biostatistics and Design of Experiments. We will talk about 

something different today, that is called the Normality test. Because many of these tests 

you know, assumes that the distribution which you are having is a Normal distribution.  

That means, if I take 100 students in my class and measure their heights and then plot it, 

in mostly it will follow a Normal distribution, and you know what is Normal 

Distribution? Mean, Median, Mode, 3 Ms. Mean, Median, Mode should be equal. And if 

I take the average performance of the class and plot it with that of all the students, mostly 

it should follow a normal distribution. So many of this statistical test assumes that the 

distribution which you are having is a Normal distribution. So definitely we need to 

check whether the data which we have is a Normal distribution. So, that is what is called 

the Normality test. 

There is something called the Skewness that means, the way the distribution has moved 

to the right or left and there is also something called the Kurtosis, which is an indication 

the Peakedness of the data, is it too much peak or it is very flat. So, these are indications 

of Non-normal distribution. Let us look at some points. 
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When you are testing for normality, the null hypothesis is the data is normally distributed 

from the, they are normally distributed population and alternate hypothesis is it is a Non-

normal distribution. So you can from the test, accept the null hypothesis or reject the null 

hypothesis. 

There are many types of normality test. Many of them, one is called the Anderson-

Darling test. So what it does is, it compares the empirical cumulative distribution 

function of the sample data with the distribution expected the data were normal. The 

observed difference is inadequately large then reject the null hypothesis. So if we have a 

data set, from the data set you calculate a mean and a standard deviation and then you 

plot that with the data which you have. If it follows normal mostly the expected and the 

actual will follow on that line, then we could say it follows a Normal distribution. Like 

this you know, you will have a max and then on both sides you will have data falling 

down. So, we can say this data set follows a normal distribution.  

Whereas we look at this data set, so you have ends in the lower region, large frequency 

of data or upper region you do not have. So, when you plot, you calculate this mean and 

standard deviation and you plot assuming a Normal distribution, what is expected and 

what is observed. So, in most of the cases the observed will be much less than what is 

expected, that is why these data points are below. The observed will be what is much less 

than expected. In fact, this example was taken from this particular reference here 



actually. So, we can say because it does not follow what is expected, the observed is 

much, the expected is much below the observed because, most of the data is on the left-

hand side here as you can see, obviously, this is a Non-normal distribution. Where as in 

this particular case we have maximum data in the center that is, maximum frequency on 

either side of the frequency goes down. That is a bell-shaped curve that is a uniform 

distribution. So, when you calculate mean and a standard deviation and plot what is 

expected on one axis and what is observed on another axis they seem to follow almost on 

that straight line, where as in this particular case they do not seem to follow, fall on that 

straight line. So obviously, we reject the null hypothesis, we can say that data is non-

normal. So, as I said this was taken from this particular reference paper, very interesting. 
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Now, in addition to this Anderson-Darling test, there are other tests like Ryan-Joiner test, 

a Kolmogorov-Smirnov test, Shapiro-Wilk test and so on. So, in Ryan joiner test, what it 

does is, it calculates a correlation between the sample data and the normal data. Sample 

data could be normal or non-normal and the normal data. And then if the correlation 

coefficient is very near 1, then we can say this particular data set comes from a normal 

population. As you know correlation coefficient is a measure of how closely the data is 

correlated to the normal data. If it is very less, obviously we can say generally correlation 

coefficient lies between 0 and 1, if it is very high and closer to 1, we can say that the 

sample data is normal population, otherwise we would say it does not come under the 

normal population.  



So, it basically looks at the strength of the correlation coefficient. So, you will reject the 

null hypothesis for normality if it is the correlation coefficient is large. Now you have the 

Kolmogorov-Smirnov normality test, it is an empirical distribution function in which the 

theoretical cumulative distribution function of the test distribution is contrasted with the 

EDF of the data. So, it calculates an empirical distribution function, for this sample and 

there is an empirical distribution function for the normal and then it compares actually.  

This Shapiro-Wilk is almost similar to Ryan-Joiner and basically you are having a 

correlation between the data and the corresponding normal, so it is a better test than this 

particular. So, we have different approaches by which we could do. So, in the Anderson-

Darling test what we do is from the data set, we calculate here mean and a standard 

deviation and we predict how the normal curve will look like and then we compare it, we 

plot them together with the actual data and that will give you an observed and expected. 

If they do not fall on that line, then we can say that the data does not come from the 

normal population. This, as this example shows which is taken from this particular 

reference paper. Otherwise, the Ryan-Joiner or the Shapiro-Wilk test, what it does, it 

calculates a correlation coefficient between the sample data and the normal scores of the 

data and then if the correlation coefficient is high, we can say there is, it is very strongly 

correlated to be a normal distribution.  

So, the another method called Shapiro-Wilk, that also is similar to this Ryan-Joiner 

method which is based on a correlation. The another method Kolmogorov-Smirnov, it 

actually calculates something called empirical distribution function, for the data as well 

as it compares with some theoretical EDF and then tries to predict or try to sum up 

saying whether, the data is a normal population or not actually. So, these are the different 

test and many commercial softwares have all these methods available, so you just click a 

button. This is the easiest of the Anderson-Darling, because you can see from the figure 

very clearly whether the data is falling under the normal or not. So, the observed and the 

empirical or expected will fall nicely on the straight line. We can tell it is normal and if 

the p > 0.05, then of course there is no reason for you to reject the null hypothesis. If the 

at data expected and the observed do not fall in this straight line, it falls all over the place 

like in this particular example, then obviously, it is a non-normal and the p value will be 

less than 0.05. So, you reject the null hypothesis and accept the alternative hypothesis.  



And then the other tests which is mentioned the Ryan Joiner test which calculates 

something called a correlation coefficient, then Kolmogorov-Smirnov method which 

something calls empirical distribution function. 
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Then, we also have some parameters called Skewness and Kurtosis, they are also 

indication of the normality of your data. For example, you can have a negative skew that 

means on the negative side you may have a less data at the left-hand side. Positive skew 

that means you have skewed towards the right, this is called a negative skew this called a 

positive skew. So, excel also as function called SKEW. 
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So, given a data set, it calculates what is the skewness of the data. So, I have some data, 

so I do a skew, s k e w, skewness is an indication 0.7065. So, it is plotting something like 

this. So, excel function is there, for a Normal distribution this skewness factor will be 0, 

for the Normal distribution the skewness factor will be Zero, for an negative skewness 

means you have a skewed to, skewed to the left and positive values indicate data that are 

the skewed to the right. So, positive value will indicates the data is skewed to the right 

actually. So, this is the formula for skewness, it is called the Third moment here, so you 

have xI that is the data point, each of the data point minus  is the average ÷ the 

standard deviation cube actually, and it is calculated for all these data points. So, excel as 

I showed you can calculate your skewness and it tells you whether it is positively skewed 

or whether it is negatively skewed.  

For example, if had more of these points, it is getting pushed as you can see it becoming 

bigger and bigger. So, skewness tells you how the shape of the curve is. It is sort of 

leaning towards the right that means the negative skew, it is leaning towards the left that 

means it is the positive skew. And for a normal distribution the skewness will be Zero.  
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Skewness is called 3rd moment and we have another term that is called Kurtosis. 

Kurtosis is a measure of Peakedness, suppose you have a normal distribution like this, 

may have very peak key curve and falling down very fast or we may have a flat curve. 

So, high kurtosis leads to a very distinct peak near the mean and it is falling down very 

rapidly on both sides actually, very heavy tail. Low kurtosis that means flat. So, kurtosis 

is a Fourth moment, as you we can see you know Third moment is skewness, fourth 

moment is Kurtosis. So, xI that means each of the data points minus that is mean ÷ 

standard deviation raise to the power 4. So, excel also has this term called Kurtosis. 
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Let us look at the kurtosis also here for your data set, so we can say minus, sorry, equal 

to KURT so you get some value for Kurtosis actually. So, if the kurtosis value is very 

high you will get a very sharp peak falling on both sides, if it is low kurtosis the top will 

be very flat actually. So, the Skewness and Kurtosis determines how the curves look like 

and obviously, they lead to Non-normally distributions. Now this also, I have taken it 

from a reference here, which is given here. 
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So, this is a normal random numbers, normal distribution. So basically, you do not see 

any skewness that means movement towards left or right, there is no sharp peak. Now 

look at this, this particular case skewness is very small, kurtosis is 2.9, this skewness is 

very small, skewness 0 means it is very normal and will uniformly distributed. In this 

particular case as you can see skewness is 0.06, but kurtosis is very high 5.9, that is why 

we get like peak like this, sorry, we get a peak like this and both side it is falling. Now 

skewness is also high, kurtosis is also high, so you get a distribution like this.  

A skewness is low, kurtosis is 4.4 look at this, so you get different types of pictures 

depending upon this skewness and kurtosis and each one is called some distribution, this 

is a normal distribution, this called a double exponential distribution, quasi random 

distribution, this Weibull distribution and so on actually. This was taken from this 

particular reference actually is very nice because, a normal distribution a bell shaped, 

there is no leaning towards left or right, whereas when I have very high kurtosis it 

becomes very peaked. When you have a larger skewness, it is becoming more bent as 

you can see the kurtosis is very, very large, as you can see in this particular example. So, 

we can have different types of shapes of the distribution depending upon the skewness 

and kurtosis and so we talked about various types of factors which determine the shape 

of your curve, normal distribution curve, this skewness and kurtosis and how important it 

is to determine whether your data set is normal because in most of the problems we 

assume normal distribution, most our calculation we assume normal distribution. So, you 

need to know whether the distribution which you are handling is normal distribution and 

easiest of it is calculate the mean and the standard deviation and then we calculate what 

is expected and observed is your sample and see whether they fall in the straight line, if 

they fall with the large p value then we do not reject null hypothesis, if they do not fall 

on that and the p value is much less than 0.05, then we reject the null hypothesis and 

accept the alternate hypothesis ok. 

So, this is what is all about when you are testing for normality. Now there is another 

statistical calculation that is called odds ratios. 
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It is a point estimation, its ratio of 2 important numbers which gives you some indication 

of performance of some drugs or some the effect of certain a treatment and so on, but it 

is only one point data. How do you make out sense from this one point data? And that is 

what this odds ratio is all about actually. Basically, it is a one number summary of data. 
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It is used to infer from the study, it could be like dose finding trials: maximum tolerable 

dose. What is a maximum tolerable dose of this particular drug on human? Or what will 

be when you are doing a safety study or efficacy trials, what is a median survival? What 



is a response rate? These are all point estimation and they come under the concept of 

odds ratio or (Refer Time: 18:21) also are called hazard ratio also odds ratio, hazard 

ratio. 

(Refer Slide Time: 18:24) 

 

Let us look at some examples actually, when you are looking at say change in tumor 

volume or tumor diameter, that is a continuous variable, we can calculate mean, we can 

calculate median for that, if your looking at how the tumor volume changes in 1 month 

so that is a continuous data. Binary data we can have responses, progression, 50 % 

reduction in tumor size we all know about this actually right. Here, where we use this 

odds ratio where as if the data is continuous we can use mean, median, mode, range, 1st 

quartile, 2nd quartile, 4th quartile, inter quartile range, all those things but when you 

having a binary data then odds ratio come into this picture actually.  

Proportion of male to female having a particular disease, proportion of observed changes 

in a certain parameter in 2 different species and so on actually. In such situations, we use 

this odds ratio. Let us not go too much into other types of variables. Time to event 

variables like time of progression, time to death, time to replace, then we used median 

survival, k year survival, hazard ratio, then other type of variable is nominal, categorical, 

ordinal, let is not go into these things actually. 
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So, let us look at an example, is gender associated with use of standard adjuvant therapy 

for patients with newly diagnosed stage three colon cancer. Now 53 % of men received 

this standard adjuvant therapy, 62 % of women received standard adjuvant therapy. This 

was taken from this particular reference actually, j c o volume 20 March 2002. So, 53 % 

of men received this therapy, 62 % of women received this therapy, who were diagnosed 

with stage 3 colon cancer. Now how do we quantify this difference? Because this looks 

like can I just take 53, 62 and then I will say 62 - 53 calling it 9 % of men sorry 9 % of 

more women received this therapy that is wrong. This is where odds ratio come into 

picture. 
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So, odds ratio we can calculate p/(1-p) 

is for a, for the men 53 %. We will calculate a p/(1-p)is 0.53, ÷1 - 0.53, that means 0.47, 

0.53, but 0.47 is 1.13. Similarly, for female 62 % that is 0.62 ÷1 - 0.62, so here 1.62 ÷ 

0.38 is 1.63. So, we divide this by this, so odd ratio comes out to be 1.44. So, a woman is 

1.44 times more likely to receive standard adjuvant therapy (SAT) than man. We do not 

say that 9 % of women more women receive standard adjuvant therapy treatment, we 

need to say a woman is 1.44 times more likely to receive standard adjuvant therapy than 

a man, using this concept of odd ratio, odds ratio as it called. So how do we calculate? 

p/(1-p), that gives you for the man, p/(1-p)that gives you for woman and then you take 

the ratio, that is 1.44 understand?. Is a odds ratio is very useful in this type of situation 

point data. 
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Let us look at so the concept is odds ratio OR is  
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. So, if OR is > 1, increase risk of group 1 when compared to group 2, if OR is = 1 ,there 

is no difference in risk between group 1 and 2, OR is < 1, lower risk in group 1 when 

compared to group 2. See in this particular example, p1 is the proportion of women who 

received the standard adjuvant therapy, p2 is a proportion of men who received the 

standard adjuvant therapy understand?. 
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So again, we can use it in the form of a table. So, SAT, no SAT, women, men is, suppose 

298 women received SAT, 250 did not receive, 550 is the total, men is 202 received SAT, 

248 did not receive that comes to 450 understand?. So how do you calculate odd ratio 

p1? 298 ÷ 1 - p1 is 

 

 

 So, that comes to  
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So, we get a * d  b into c, that is the formula for these odds ratio understand. So how do 

you calculate p1? p1 is nothing but, 298 / 550. How do you calculate 1 - p1? 252 ÷ 550. 

How do you calculate p2? 202 ÷450. How do you calculate 1 - p2? 248 ÷450. 

So, we have we can cancel all of them so it comes to 298, ÷252, 202 ÷248. So, 292 * 

248, 202 * 252. So, 298 is nothing but a and 248 is nothing but d, 252 is nothing but b, 

202 is nothing but c. So, the odd ratio when you have a table is a d ÷b c. So, it comes out 

to be the same. So, 
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very simple, so odds ratio from a 2 by 2 table. So, this is a important formula we need to 

remember. 
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So, it ranges from 0 to infinity, in this particular case we got 1.44. So, the numbers can 

be very very large, it is not symmetric. So, when you have 0 to 1, it is protective, >1 it is 

a increased risk. So, women are 1.44 times the risk divided by chance of men. Men are 

0.69 times the risk irrespective chance of women right, in that particular example of that 

actually. 
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When we take log logarithm of odd ratio, when you take logarithm of 1.44 it comes to 

0.36, logarithm for men to women, women to men is 1.44 for the inverse will be men to 

women that is 0.69. So, when you take it becomes - 0.36. So, when log or odds ratio is >  

0 is increased risk or = 0 no difference, logarithm or <  0 is decreased risk ok?. So just 

like this, OR >  1 increased risk, OR = 1 no difference, OR < 1 lower risk. So, when you 

take a logarithm, it become 0, > 0, =  0, < 0, that is what this table is all about, ok?. When 

we take the logarithm of that it is sometimes is better to take logarithm especially, when 

you are dealing with very large number of, very large data points. So, log the or the odds 

ratio helps us to look at association between 2 variables, in this particular case we looked 

at male and female gender with when you adjust the other variable actually. 
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So, in this particular example, we are looking at the gender standard adjuvant therapy 

example. So, we looked at gender standard adjuvant therapy odds ratio is adjusted for 

ofcourse, you have to assume age, when you talk about men and women you should 

adjust for age, race they could be coming from different continents region, northern 

region, southern region, marital status, whether they are married so you need to adjust all 

these things then only you can do a proper odd ratio otherwise, there these values may be 

confounding your results. So, you need to remember that and it can be used very 

globally. So, that is the beauty of this concept of odd ratio, we can use it as a term if you 

adjust globally and make it a general statement actually. 
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Now let is look at another example, is related to Paclitaxel, as you know Paclitaxel is a 

drug which is used for an anti cancer treatment and there is another type of treatment that 

is called a CAP treatment. Where they give a Cisplatin, Cisplatin is a platinum based 

material anti cancer drug. So, 14 patients, 8 patients were given complete responses. So, 

some patients are given Paclitaxel, some patients were given this Cisplatin type of drugs. 

So, 14 patients in the CAP group had complete responses, where as 8 patients in the 

Paclitaxel group had complete responses. So, if you are doing for a CAP, 14 will take p1 

as cap 14 ÷ 47 is 0.3, p2 is 8 ÷ 47 is 0.17. So, odds ratio will be 0.3 ÷ 0.7 ÷0.17 / 0.83 

that comes to be 2.1. So, what does that mean? That means 2.1 of the cap group and 8 

when compare to the Paclitaxel groups. So, we can you do the same thing using the table 

also. 
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So, we do 14 total is 47. So, we say 14 people complete response, so no response is 33 

because 47 is the total, Paclitaxel 8 response, no response is 39. So, if you want to 

calculate odd ratio 14 into this divided by this into this, right?. So, 14 in the CAP group 

had response, 8 in Paclitaxel group had complete response. So obviously, if you look at 

the odds ratio 2. What how do you name it? Patient in the CAP group are twice as likely 

to have a complete response as those in the Paclitaxel group. And you get the same 

answer 14 * 39 ÷33 *8 actually, * 39 ÷8 * 33, that will give you 2.1. So, the statement 

you make is patients in the CAP group are twice as likely to have a complete response 

when compared to the Paclitaxel group.  

So, we will talk about these things more in the next class, because odds ratio gives you a 

single point statement for comparing certain data, mostly binary data, live-dead or a 50 

% recovery and so on actually. 

Thank you very much for your time. 
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