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In the last class, we looked at the relationships between some of those properties, 

thermodynamic properties using some simple aspects of mathematics. We also saw the 

Gibbs-Duhem equation, which is a central equation in thermodynamics. Since, it gives 

the simultaneous variation with temperature, pressure and chemical potential, which are 

the fundamental intrinsic properties of a system. We will continue looking at useful 

relationships between various variable, and also I will tell you how it comes in useful in 

the tutorial part. The next thing that we are going to look at in the same vein is 

Maxwell’s relations. 

(Refer Slide Time: 01:04) 

 

To get to Maxwell’s relations, let us first consider a theorem and calculus that is 

applicable to exact differentials. We do not have to worry too much about whether we 



are dealing with exact different differentials or not in thermodynamics, because we deal 

with state functions in thermodynamics mostly, and most of those state functions can be 

written as exact differentials. 

The theorem says if f can be considered as a function of some variables which are given 

here as x 1, x 2 and so on till x k, then df … df being an exact differential, can be written 

as dou f by dou x 1 at … evaluated at all these other variables kept constant which is 

indicated by x j as I had mentioned earlier d x1plus dou f dou x 2 x j which means x1 x 3 

and other variables … x k are held constant – that is what this x j means –  dx 2 and so 

on until dou f by dou x k, all other x js remaining constant, dx k. So, this is a 

fundamental theorem that is applied to … applicable to exact differentials. 
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Now, let us take those partial differential dou f by dou x 1 x j at constant x j, dou f by dx 

2 at constant x j, and so on and replace them with another symbol for easy manipulation. 

Let us say that y 1 equals dou f by dou x 1 at constant all other x js. If we do that, then, 

we can write the previous equation as df equals y 1 dx 1 plus y 2 dx 2 and so on till y k 

dx k. Let us call this equation 2.24. The theorem that was mentioned initially with this 

also known as reciprocity relationship, says that when we can do this that is df being 

expressed as y1 dx 1plus y 2 dx 2 and so on till y k, dx k, dou y i by dou x n x j at 

constant x j equals dou y n by dou y n dou x i at all other x j s remaining constant. For 

example, if you take i to be 1 and n to be 2 dou y 1 by dou x 2 at all other x j s remaining 



constant equals dou y 2 by dou x 1 at all other x j s remaining constant. It is applicable 

for any i and any n … that is different from i. For example, it could be dou y 3 by dou x 

10 at all other x j s remaining constant equals dou y 10 by dou x 3 at all other x j s 

remaining constant. 
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If we apply this theorem, also called the reciprocity relationship, to our basic equations 

that we had given earlier, basic differentials that we had given earlier … If you recall 

equation 2.12 which is also given here dU T equals T d S T minus P d V T plus 

summation of mu i d n i. 

Remember that this consists of many different terms that are given by the sum sign. If we 

apply the reciprocity relationship here it will give us dou T by – let us chose this be other 

variable – dou V T, at all other things remaining constants such as S T and all n is 

remaining constant, this equals minus dou P which is related to V T earlier dou P dou S 

T at V T and all other n i s remaining constant. So, this gives a nice relationship between 

the thermodynamic variables just by using the reciprocity relationship of writing 

differentials. 

We will call this equation 2.26. Let me show this a few more times so, that it becomes 

simpler to remember. Let us consider the next relationship d G T equals minus S T dT 

plus V T dP plus summation of mu i d n i as we have already seen in equation 2.15. If we 

utilize the reciprocity relationship here, one of them, then, minus comes from here – 



minus of dou S T dou dP at constant T and all other n I, equals dou V T dou T at constant 

P and all other n i. By now you must be getting comfortable with writing reciprocity 

relationships from total differentials. Let us call this equation 2.27. 
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Let us take another example.  I will give you all four or … more than four in the first 

case. d H T, we have seen, is T d T S plus V T dP plus summation of mu i d n i and this 

was equation 2.17 before. If we write … or apply the reciprocity relationship here dou T 

by dou T dou P at constant S all other n i equals dou V T dou S T at constant P all other 

n i – equation 2.28. Let us consider d A T now.  We already have equation 2.18 as d A T 

equals minus S T d T minus P d V T plus summation of mu i d n i. That must become 

second nature to you. dou S T dou V T note –  both are minuses here. So, you do not 

have to worry about it, if you take these two. dou S T dou V T at constant T all other n i 

equals dou P T dou T at constant V T all other n i. We will call this equation 2.29. 
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Let us consider equation 2.15 again. Earlier for all the four equations … for a close 

system, we looked at just the first two terms for writing the reciprocity relationship. Now 

let us look at the third term also.  Note that this consists of the sum. So, each one is 

different here. So, let us take one of those … dou mu i dou T at constant P all n i equals 

minus dou ST dou n i at constant T P and all n j s apart from this n i. Let me repeat this 

dou mu i dou T at constant P all other n i equals, minus – minuses here – dou S T dou n i 

constant T, P, all other n j s … which are different from i. Let us do this once again to get 

other useful relationships. Before that, let’s call this equation 2.30. 

dou mu i dou P at constant T, all n I, equals dou V T dou n i at constant T, P, all n j s 

different from n i remaining constant. We had considered these two terms while this 

equation. Let us call this equation 231. There was a reason why we chose to compare 

these two and these two and actually use d j 2 to do it. If you recall we have dG T with 

variation of T P and n i. So, which are easily measurable variables? If they are easily 

measurable then we can do experiments with them quietly easily. This gives the variation 

of chemical potential with temperature which is a very useful relationship to have when 

the pressure and the number of moles of all species are held constant which can be done 

experimentally. 

This gives the variation of chemical potential with pressure when the temperature and all 

moles are held constant which can be again done in an experiment. And this is given in 



terms of the other thermodynamic variables which may be easier to determine. So, that is 

going to be some sort of a theme in this particular module. That is expression of difficult 

to measure thermodynamic variables in terms of easy to measure thermodynamic 

variables. That is a way we are going to use these equation. These equations are valid for 

anything that you want to do. These relationships are there for anything that you want to 

do. We are going to do one small aspect or one aspect of the many different things that 

you can do with these relationships. 
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The equations 2.26 to 2.31 let me go back and show you 2.26 just for recall; 2.27… 2.26 

was dou T dou V T constant S T n i equals minus dou P dou S T constant V T n i. 2.27, 

minus dou S T dou P at constant T n i equals dou V T dou T at constant P n i equation 

2.27. 2.28, was dou P dou T constant S n i equals dou V T dou S T constant P n i. 

Equation 2.29 was dou S T dou V T constant T n i equals dou P dou T at constant V T n 

i. And, as we spent some extra time here dou mu i dou T at constant P n i equals minus 

dou S T dou n i at constant T P all other n j s and dou mu i dou P at constant T n i equals 

dou V T dou n i at constant T P all other n j s. 



(Refer Slide Time: 14:14) 

 

So, these equations are called Maxwell’s relations. Very useful. As I had already 

mentioned its worth mentioning again: Temperature, pressure and the total volume are 

easily measurable. Maxwell’s relations can help us that is one of the things they do you 

can do many other things with them can help us express the other variables such as U T, 

internal energy, S T, enthalpy total enthalpy –  all these are total quantities since that are 

more than one mole of the substance … of the pure substance that way considering here 

– H T is enthalpy … total enthalpy, A T is total Helmholtz free energy, and G T is total 

Gibbs free energy. 

All these can be written in terms of easily measurable T P and total volume and 

therefore, by these measurements under suitable conditions we can estimate these 

thermodynamic variables U T, S T, H T, A T and G T.  

We started with a slightly more general set of relations. The Maxwell’s relations that we 

have written down so far are valid for any system, any pure substance, irrespective of the 

size of the system or the number of the moles in the system. Whereas, in many different 

books including your text book, initially when this is introduced, you would find the 

Maxwell’s relations written for one mole. Which means, the mu i d n i terms any d n i 

related terms n i related terms will not be there because you have only one mole and that 

is held constant. 
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Let us look at these relationships for completeness because you can directly use these 

relationships under such conditions where you have one mole of the substance. dou T by 

dou V constant S equals minus dou P dou S constant V. This was obtained by applying 

the reciprocity relationship to the total differential written for one mole of the substance. 

dou T dou V at constant S equals minus dou P dou S at constant V; minus dou S dou P 

constant T equals dou V dou T constant P. dou T dou P constant S equals dou V dou S 

constant P; and dou S dou V constant T equals dou P dou T constant V. 

You may want to compare these expressions … I would like to do that … I do not want 

to go back now. I would like do that. If you just compare this expression with the earlier 

Maxwell’s relations that we have written, you would see that these are exactly the same 

as the first four Maxwell’s relations that we had written except that you do not have any 

n i s occurring because we have one mole of the substance. These would come in handy 

in some of your problems in the university exams and so on. 
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OK, now, we are going to do some tutorial work. I am going to present this problem to 

you, and then I will give you some time to work it out, because you will understand the 

application of these equations and get comfortable with the applications of these 

equations only by working out problems. And you need to work them out first – that 

would be the most effective. So, you will work them out. I will give you time, may be 

about 10 minutes. And may be after some time, I will present a part of the solution so 

that you can start working at a faster pace if that hint or part of the solution is going to 

help you. 

Later I will give you the entire solution. This exercise essentially shows a way to use 

some of the relationships that we have a developed so far. The question is, for a closed 

system express in terms of easily measurable properties, pressure, total volume and 

temperature the variation of internal energy with volume for a process in which the 

temperature and the number of moles are held constant. Essentially we are looking for 

dou U T, the variation of internal energy, with volume. So, dou U T dou V T at constant 

temperature and n i. Please go ahead you have about 10 minutes. I will come back in 

some time in present part of the solution. 
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.  

Let us look at a part of the solution now. To do this, you know that we are looking for 

dou U T dou V T. Let us begin with equation 2.12. Because this has the relationship for 

dU T and these would be dou U T and so on. dou U T variation. We know that dU T 

equals T dS T minus P dV T plus some overall terms i mu i d n i. The partial derivative 

of V at constant T and n i can be written as dou U T dou V T T n i. T dou S T dou V T 

minus P dou V T dou V T T n i plus summation overall i mu i dou n i dou V T at 

constant T n i. To continue further … we are looking at dou U T dou V T at constant T n 

i. Look at these terms here and see what you could do to get it in terms of measurable 

quantities. Take another five minutes or so. 

(No audio 36:11 to 41:26)  
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Let us continue with the solution. Look at the second and third terms on the right hand 

side here … P dou V T dou V T T n i plus summation of mu i dou n i dou V T at 

constant T n i. The second and third derivative terms on the right hand side are 1 and 0. 1 

because dou V T dou V T. So, that goes to 1 and 0 because n i is a constant. So, any 

variation with n i would be 0. Therefore, what remains of that equation is dou U T dou V 

T at constant T n I; this was the initial left hand side. The first term remains: equals T 

dou S T S dou V T at constant T n i, and since this is gone to one whatever accompany P 

here we just have a P remaining minus p. 

So, dou U T dou V T at constant T n i equals T dou S T dou V T constant T n i minus P. 

Now if we use one of the Maxwell’s relations which is equation 2.29 here, dou S T dou 

V T … this we know is a little difficult to measure. So, let us try to write this in terms of 

easily measurable quantities. dou S T dou V T at constant T n i equals dou P dou T at 

constant V T n i. In this case P T is all easily measurable. If we do that then you can 

write dou U T dou V T at constant T n i, which is what we need, equals T. 

This we are going to replace with this dou P dou T at constant V T n i minus P; equation 

2.32. Let me call this equation 2.32 because it will come in useful later, which is actually 

the needed relationship. You have gotten this in terms of all easily measurable 

thermodynamic variables T, P, V T, n i and so on. 
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To recapitulate the easily measurable ones are P, T, V the molar volume or V T the total 

volume. In addition, the following are measurable, and the data is available in the form 

of tables or figures in books, handbooks or papers for pure substances. Some of these are 

available at the back of your text book Smith VanNess and Abbott. C P, heat capacity at 

constant pressure, this is available … the data is available. C V heat capacity at constant 

volume, the data is available, alpha which is expansivity.  I will go into details of this in 

a little while, and kappa the compressibility are all available. So, if they are available we 

might as well make use of them to estimate the difficult to measure thermodynamic 

variables. In addition to these the latent heats are available as well as the heats of 

reaction are available. Let us look these in a little more detail … other measurable 

thermodynamic variables. 
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Heat capacity C P is defined as dou H dou T at constant P. This is for a pure substance. 

We will call this equation 2.33. For any system C P is defined as dou H T dou T at 

constant P. This is for one mole of a pure substance this is for any system. Now C V is 

defined as dou U dou T, C P was dou H – enthalpy – dou T, C V is dou (internal energy) 

dou T at constant volume. Since this is V at constant volume we call it C V is specific 

heated constant volume. This is for a pure substance we will call equation 2.34 and for 

any system you can write you can define C V as dou U T dou T at constant V. 
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Expression of the not-so-easy to measure thermodynamic properties in terms of 

measurable thermodynamic properties helps in estimation of the not-so-easy to measure 

ones. I am just repeating this, so that it gets across better. Now, using that exercise, let us 

… those relations … the definitions for C P and C V and so on; let us do a problem; let 

me probably post the problem now; and let you work on that we still have about 5, 6 

minutes left in this lecture. Please take that as a tutorial part of this lecture; please work 

that out, and when we meet in the next class, I will give you the solution. 

The problem is as follows: For a closed system consisting of one mole of the pure 

substance – makes things easier; one mole of the pure substance express in terms of more 

easily measurable properties. The variation of enthalpy and entropy with temperature and 

pressure, respectively. What I mean is dou H T dou T … enthalpy with temperature at 

constant pressure dou S T dou T at constant pressure and variation of entropy with 

temperature at constant pressure, variation of enthalpy with pressure at constant 

temperature, just the vice versa, and the variation of entropy with pressure at constant 

temperature. Please go ahead and do this. We will start with the hints in the next class. 


