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Welcome back!  

In this lecture, we will begin the last module for this course. The last module is module 

six on reaction equilibria. If you recall in the last module, we had explicitly said that we 

will not consider any reactions.  … We had situations like that in biological systems, 

plenty, and therefore we could use whatever we developed in that module to explain 

many situations. But as you all know reactions take place all the time.  Whether it is 

macro-biological system, for example, a bio-process – there is reactions taking place.  Or 

even at the cell level - the cell is alive and kicking only because of the thousands of 

reactions that take place in a cell.  

Under … reasonable conditions, we could still consider this cell as a continuum, and 

therefore apply these principles of analysis to the cell also. Therefore, the reactions that 

take place in the cell can also be considered to be a valid system for the application of 

these principles. So, let us start looking at the bases to develop reaction equilibria, the 

conditions for the same, or the criteria for the same. Earlier, if you recall, in module five, 

we had criteria for the phase equilibria or when there were no reactions that we are 

taking place, and so on. We will develop similar criteria, when reactions are present.  
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To do that, we will touch up on many things that you may already be somewhat familiar 

with, because of exposure in eleventh, twelfth standards, or even in courses that you took 

before … you took this thermodynamics course. … Let us consider a bio-chemical 

reaction, say that occurs during a cell metabolism, say a reaction in glycolysis.  Let us 

represent that … this is a hypothetical equation … let us represent that by 2 A plus B 

giving you 3 C.  I had just picked random numbers here, 2 A plus B giving you 3 C. Let 

us call that equation 6.1. The stoichiometry represented by the above equation can be 

written as 0 equals 3 C, 3 C minus 2 A minus 1 B. I have deliberately written it like this. 

I have taken 3 to be positive, you know the product associated coefficient to be positive, 

minus 2 A minus 1 B equals 0.  Or, in general, I could write this stoichiometry as, or I 

could represent the reaction as 0 equals sum nu 1 M 1 plus nu 2 M 2 plus nu 3 M 3. In a 

minute, I will tell you what nu s and M s and so on, are.  In this case, nu 1 M 1, nu 2 M 2 

nu 3 M 3. Let us call this equation 6.2, I wrote it … in this form for a reason. 
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I can now make this into a compact notation, 0 equals some over i nu i M i. This is the 

reason why I had written at that way; equation 6.3, where nu i is this stoichiometric co-

efficient which we will take as positive for the products of the reaction or the bio-

chemical species on the right hand side of the equation.  Like this; you know, if this is 

the equation, … the coefficients on the right hand side, we are going to take as positive. 

And the coefficients on the left hand side, which is that for the reactance, we are going to 

take as negative. 

So that works well here, 3 C was positive minus 2 A, reactant, negative, minus 1 B, 

reactant, negative.  Therefore, negative for the reactants, which are the bio-chemical 

species on the left hand side. I have already given you an answer, but why did not you 

take about five minutes and complete it? Why did not you write down nu 1, nu 2 and nu 

3 for the reaction that we just saw? Go ahead, take about five minutes, and write this 

down.  Go ahead please.  

(No audio from 05:39 to 10:59)  

 If you had followed the reasoning that we presented earlier, you can easily see that nu 1 

was the coefficient of A, minus 2, nu 2, the coefficient of B, minus 1, and nu 3, the co-

efficient of C 3. And M i is the various biochemical species A, B, or C in this particular 

example that is considered in the reaction. Let me state this although we would not be 

looking at this in great detail, but it is good to state this here. If there is an inert species 



that is present in the system, for an inert species, that is present in the system, but does 

not react, the stoichiometric coefficient is taken as zero. Have this in mind.  Whenever it 

becomes necessary to use this, please use this, and that will make things a lot more 

general. 
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Now, let us go back to what we already know. We know that the changes in the number 

of moles of each species in a reaction are directly proportional to the corresponding 

stoichiometric coefficients. What do I mean by that?  

For example, in the above reaction given by equation 6.1, which is 2 A plus 3 B equals 3 

C, if we divide this equation two throughout by 2, we get A plus half B equals three by 

two C.  Or, if 1 mole of A disappears, half a mole of B will also disappear to result in 

three by two or 1.5 moles of C. Therefore, the changes in the number of moles of each 

species are directly proportional to the corresponding stoichiometric coefficients.  
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This particular aspect can be represented as the change in number of moles of 1, delta n 

1, divided by the stoichiometric co-efficient, nu 1, equals the change in the number of 

moles of 2 divided by the stoichiometric coefficient 2, equals the change in the number 

of moles in 3 divided by the stoichiometric coefficient 3 and so on, equals delta n i 

divided by nu i, and let us say that equals something called delta epsilon. We will call 

this equation 6.4. 

Delta n i, as I said, was the change in the number of moles of a species i, and … delta 

epsilon is the extent of a reaction.  It is also called the reaction coordinate, if you recall 

this term from your earlier courses.  Delta epsilon- the reaction coordinate, or epsilon is 

the reaction coordinate.  

For a differential change in the number of moles, we can replace these big differences by 

the differential change. And therefore, we can write d n 1 by nu 1 equals d n 2 by nu 2, 

equals d n 3 by nu 3 and so on, which equals d n i by nu i, and that equals d epsilon. We 

will call this equation 6.5.  …What I would like you to do is now, take some time, I will 

tell you how much time.  Look at glycolysis, the various reactions in glycolysis, which is 

one of the central pathways in the cell,  

Remember … glucose goes to glucose six phosphate.  Glucose from outside the cell gets 

inside the cell first and then it will goes to glucose six phosphate, fructose six phosphate 

and so on, all the way down to pyruvate.  Choose that pathway, which is called 



glycolysis. Each one of those steps as you know is catalyzed by an enzyme. Take those 

individual reactions and write equivalent expressions for, let us say, five of those 

reactions. I am going to give you about twenty minutes to do that. Take about twenty 

minutes; go back to your biochemistry text book, biochemistry notes. Choose five 

reactions that take place in glycolysis and write this down, for improving the comfort 

level in using this particular equation.  Go ahead please.  

(No audio from 16:14 to 36:39) 

Now, hopefully, you would have gotten back the level of comfort that you had in your 

earlier classes while dealing with stoichiometric coefficients, and so on, by writing down 

the relationships between the stoichiometric coefficients for at least five reactions in 

glycolysis. The choice of the reactions were yours. Of course, they were reversible 

reactions but that does not matter. 
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Now, let us look at the condition for bio-reaction equilibrium. Let us consider a system 

in which the only reaction taking place is equation 6.1, which is two A plus B giving you 

three C; that was the reaction given by 6.1. The Gibbs free energy of the reacting system 

is G T as we had seen earlier.  That can be written as n 1 into nu 1, the chemical 

potential, you know, this is per unit mole mu 1. Therefore, n 1 into mu 1 will give you 

the total free energy corresponding to species 1; plus n 2 mu 2, the total free energy 



corresponding to species 2, plus n 3 mu 3, the total free energy corresponding to species 

3, or species A, species B, and species C. Let us call this equation 6.6. 

Now, we know from either chemistry courses, the thermodynamic aspects of chemistry 

courses, or some specific courses that you would have take earlier that the equilibrium 

condition corresponds to a minimum in the Gibbs free energy. I am just going to take this 

directly from whatever we know earlier that a minimum in Gibbs free energy occurs at 

equilibrium. Since, the composition or the number of moles of each species varies as the 

reaction proceeds, we can think of a certain composition at which the Gibbs free energy 

is a minimum. 

 You know the reaction is going to take place, when the reaction takes place, with time, 

the number of moles of each species is going to change.  We already know from earlier 

that equilibrium occurs when the Gibbs free energy is a minimum. In other words, there 

must be some combination of moles of these species involved in the reaction at which 

the Gibbs free energy turns out to be a minimum. That is the whole basis of the argument 

here. 
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This means that if G T, the total free energy, is plotted as a function of let us say n 1, the 

number of moles of species 1 – that is the only thing that we can represent on one co-

ordinate. That is only reason for taking n 1. At constant temperature and pressure, a 

minimum in G T occurs at some value of n 1, and that corresponds to the equilibrium 



condition. If we write it mathematically, at equilibrium, dou n i or dou n 1 of G T, total 

Gibbs free energy at constant temperature and pressure equals 0. This is just a 

mathematical statement of the fact that we knew from earlier classes that the free energy, 

Gibbs free energy, of a system is minimum at equilibrium.  

Therefore, the slope of the G T versus n 1 curve goes to zero at that particular point. You 

know it is a minimum and therefore, this slope goes zero.   Let us call this equation 6 7. 
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Further, we know from equation 2.15 that d G T equals minus S T d T plus V T d P plus 

sum over i mu i d n I; you recall this equation?  This equation we have used many times.   

If we write equation 2.15 for our current system of interest, which is the system that 

consists of that only reaction taking place, we can write d G T; the first two terms are, of 

course, minus S T d T plus V T d P; and sum over i mu i d n i is plus mu 1 d n 1 plus mu 

2 d n 2 and plus mu 3 d n 3. Let us call this equation 6 8. 
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Now, if we apply 6.5, equation 6.5, which is d n 1 by nu 1 equals d n 2 by nu 2 equals d 

n 3 by nu 3 and so on, … and it equals d n i by nu i – and we said we could equate it to d 

of a reaction co-ordinate, d of epsilon to our current system – we get d n 1 by minus 2, 

and minus 2 was the stoichiometric coefficient of A; d n 2 by minus 1,  1 was the 

stoichiometric coefficient of B. And, since it is a reactant, this becomes minus one. 

Similarly, here also 2 was a stoichiometric co-efficient of A, and since it is a reactant, by 

our convention, this becomes minus 2; equals d n 3 by this stoichiometric coefficient of 

the product C, and since it is a product we have a positive terminology here, plus 3. So, d 

n 1 by minus 2 equals d n 2 by minus 1 equals d n 3 by 3. 

Let us call this equation 6.9.  … Therefore, d G T can be written as, minus S T d T plus 

V T d P plus this mu 1 d n 1 plus mu 2 d n 2 plus mu 3 d n 3 can be written as mu 1 d n 1 

is fine. mu 2 d n 2 is nothing but minus 1 by minus 2 d n 1. That is what we have written 

here, minus 1 by minus 2 d n 1.  There is a bracket here, and we have taken d n 1 

common out. And mu 3 d n 3 is nothing but in terms of d n 1, 3 by minus 2 d n 1, and 

that is what we have written here. Let us call this equation 6 10. 
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And at constant temperature and pressure, G T can be zero. It can be zero, only if the last 

term is zero, because at constant temperature and pressure as d T is zero, d P is zero 

anyway at constant temperature and pressure. Therefore d G T can be zero, only if this 

term goes to zero. And therefore, mu 1 plus half mu 2 must equal 3 by 2 mu 3 or in other 

words, 0 must equal 3 mu 3 minus 2 mu 1 minus mu 2. We will call this equation 6.11, 

which can be compared, term by term with the bio-reactions stoichiometry as 0 equals 3 

C minus 2 A minus 1 B, except that, this species are replaced by their chemical 

potentials. Can you see this here? 3 C minus 2 A minus 1 B, whereas here for the 

condition of equilibrium, we got 3 mu 3 minus 2 mu 1 minus mu 2. 
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Therefore, in general, if there are k species in a bio-reaction, written as 0 equals sum 

over i or k nu i M i. This sum is taken from i equals 1 to k nu i M i. Then, d G T equals 

minus S T d T plus V T d P plus mu 1 d n 1 plus mu 2 d n 2 plus so on, till mu k d n k. 

This is where we said that there are k species in the bio-reaction.  If you can write this in 

terms of the reaction co-ordinate and the stoichiometric coefficients, from equation 6.5, 

we get d G T equals minus S T d T plus V T d P plus mu 1 … you know this, d n 1 we 

could write as nu 1 d epsilon; d n 2 we could as nu 2 d epsilon, and so on.  Therefore, mu 

1 and nu 1 plus mu 2 nu 2 and so on plus mu k nu k times d epsilon. 

I hope you are able to see this. Go back to equation 6 5, if you are unable to see this, this 

will drop out from there. The relationship between the various d n and d epsilon will 

drop out from there. And from that, we will get this expression. We will call this 

equation 6.12. 
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Therefore, at constant temperature and pressure, we can write dou dou epsilon at 

constant T and P of G equals some over i nu i mu i. That is equation 6.13.  We know that 

G T minimum occurs at equilibrium and for a minima to occur the … derivative given 

here must be equal to zero. And therefore, the condition for equilibrium is that sum over 

i nu i mu i equals 0, equation 6.14. And this happens to be the most fundamental 

equation to represent chemical equilibrium, or equilibrium of a system in which chemical 

reactions take place. So, please remember this. I think we are almost out of time. 
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Therefore, when we come back, in the next class or let me see whether we can go further 

a little bit. If there are R independent reactions that occur in a system, for each of those 

independent reactions, there will be an equation of the form 6. 14. There is nu i mu i 

equals zero. Thus, R such reactions will define that system at equilibrium. Therefore, we 

will have, for a multi- reaction system, also the condition for equilibrium remains the 

same. But we will have R such equations that specify the equilibrium. We will stop here 

and when we start the next class, we will continue with other aspects of reaction 

equilibrium. 

 


